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Multiple Shooting and Parareal

All of these problems are based on the slides provided during themorning sessions. Some additional source code (Python

or Matlab) may be provided to help you with the implementation tasks. For each problem, you don’t have to implement a

parallel version of the PinT algorithm : you may use only one process that does the work of all parallel processes.

Problem 1 Multiple Shooting in Time. We first want to analyze and implement the method of Chartier and

Philippe.

1. First, we consider the linear system

f(x) = Ax+ b = 0, (1)

with b ∈ Rp
a given vector, A an invertible square matrix of size (p× p), and x the vector of unknowns.

Show that the Newton method applied to this problem converges in one iteration.

2. We now consider the linear system of ODEs

du

dt
= Au, u(0) = u0 ∈ Rp, (2)

with A an invertible square matrix of size (p × p). Show that the Multiple Shooting method applied to

this problem, using either an exact solver or the Forward Euler method, converges in only one iteration.

3. Implement the Multiple Shooting method in a generic solver. Consider the two following approaches to

compute the Jacobian matrix

Vn(t) =
∂un
∂Un

(t,Un) : (3)

(a) Solve the ODE for the matrix Vn(t) using the Forward Euler method and a given time step.

(b) Define the propagator function on one time sub-interval

ψn(U) := un(Tn+1,U), (4)

and then approximate the product of the Jacobian matrix with a vector V using finite differences,

Jψn(U) · V =
ψn

(
U + ϵ V

||V ||

)
− ψn(U)

ϵ
, (5)

with ϵ a small number (usually, close to the square root of the machine precision).

4. Solve the Lorenz system for σ = 10, r = 28, b = 8/3, u0 = (20,−5, 5) and T = 5. You may useN = 180
time sub-intervals, and the appropriate amount of time steps such that the numerical error using the

Forward Euler scheme is less than 1e−3
for the whole trajectory. Could you compare the computational

cost of this methodwith the one using a sequential approach?What is its potential in terms of parallelism?

Problem 2 Parareal. First, we want to obtain an analytical model to determine the maximum theoretical speed-

up that can be obtained with the parallel algorithm. We define it as :

S =
computation time of sequential solve

computation time of parallel solve

. (6)

We denote TF and TG the computation time for the fine and coarse solver on one time sub-interval. N is the

number of parallel processes (and also the number of time sub-intervals), and we define the parallel efficiency

as

E = S/N. (7)



1. Find a distribution of tasks between processors that maximizes the speed-up of Parareal for any TF and

TG value.

2. Show that the speed-up is bounded by N/K .

We now want to implement Parareal as a generic solver. It should be generic enough so it could be applied to

any kind of vector (or scalar) ODE. We denote by nF and nG the number of time steps per time sub-interval for

the fine and the coarse solver.

3. Solve the Lorenz system using the same settings as in the previous problem (initial value, problem para-

meters, use of Forward Euler, fine solver accuracy). What is the value of nG (using Forward Euler), that

maximizes the speedup of Parareal ? In the same way, could you find the optimal value for (N, nG) that
maximizes the parallel efficiency?

4. Solve the heat equation with Parareal on [0, 1/2] with u0(x) = 20, using J = 99 grid points in space,

and 1000 time steps for the whole simulation interval. For simplicity, we set the number of sub-interval

N = 10, and consider that this is also the number of parallel processes. Let ϵ be the maximum error (in

L2 norm) between Parareal and the fine solution (computed sequentially with the fine propagator on each

sub-interval). For ϵ = 1e−3
, can you find the optimal value for nG that maximizes the parallel efficiency?

5. Solve the transport equation with Parareal, using the same settings as in the frist problem of the second

series. How does Parareal convergence evolve when you increase the fine solver accuracy? What does this

tell about the applicability of the method for the transport equation?


