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Parabolic Multigrid
Wolfgang Hackbusch (1984): Parabolic Multi-Grid
Methods

“A multi-grid iteration for solving parabolic partial
differential equations is presented. It is characterized
by the simultaneous computation of several time
steps in one step to the computational process.”

One dimensional heat equation as the model problem:

∂tu(x , t) = ∂xxu(x , t) + f (x , t) in Ω× (0,T ], Ω := (0, L),
u(x , 0) = u0(x) in Ω,
u(0, t) = g0(t) in (0,T ],
u(L, t) = gL(t) in (0,T ].

Centered differences in space and Backward Euler in time:

un+1 − un

∆t
= Lun+1 + f n+1,

where L := 1
∆x2 [1 − 2 1] ∈ RJ×J .
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Hackbusch’s Idea for a Smoother

“The conventional approach is to solve time step by
time step; un+1 is computed from un, then un+2

from un+1 etc. The following process will be differ-
ent. Assume that un is already computed or given
as an initial state. Simultaneously, we shall solve for
un+1, un+2, . . . , un+k in one step of the algorithm.”

(I −∆tL)︸ ︷︷ ︸
A

un+1 = un + ∆tf n+1︸ ︷︷ ︸
b

.

A = L + D + U, D := diag(A), damped Jacobi for
k = 0, 1, . . . , ν

uk+1
n+1 = uk

n+1 + αD−1(b − Auk
n+1)

= uk
n+1 +

α

1 + 2∆t
∆x2

(uνn + ∆tf n+1 − (I −∆tL)uk
n+1)
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Hackbusch’s Idea for Coarsening
Now use this sequential Jacobi procedure in time as a
smoother, and use a coarse correction in space:

Hackbusch observes:

I Very fast multigrid convergence when coarsening in
space

I Much less good convergence when coarsening in time as
well

Lubich and Ostermann (1987): Multigrid WR
“For the case when the same step-size is used at all the nodes of a

level, we regain the method proposed by Hackbusch to which our

results will apply in particular.”
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Parabolic Multigrid with Space Coarsening
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Parabolic Multigrid with Space-Time Coarsening
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Parabolic Multigrid with Space-Time Coarsening
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Parabolic Multigrid with Space-Time Coarsening
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Convergence Comparison
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What goes wrong with space-time coarsening?
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There is no smoothing in time!
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Early Remedies

Horton and Vandewalle (1995): A Space-Time Multigrid
Method for Parabolic Partial Differential Equations

“The fully discrete PDE is a strongly anisotropic
problem. Pointwise smoothing combined with stan-
dard coarsening is a notoriously slow procedure for
such problems.”

Proposed Remedies:

1. Adaptive semi-coarsening in space or time depending on
the anisotropy

2. Prolongation operators only forward in time

“Numerical results [. . . ] for the one- and two-dimensional
heat equations for both first- and second-order
discretizations of the time derivative [. . . ] proved to
converge quickly, although at present the F-cycle seems to
be necessary to achieve grid-independent rates.”
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Time Multigrid for Dahlquist’s Equation

∂tu = λu, u(0) = 0, λ ∈ C
Applying Backward Euler in time, we obtain

un+1 − un

∆t
= λun+1 ⇐⇒ (1− λ∆t)un+1 − un = 0.

Writing these equations simultaneously for many time steps
leads to the linear system

(1− λ∆t)
−1 (1− λ∆t)

−1
. . .
. . .

. . .


︸ ︷︷ ︸

A


u1

u2

u3
...


︸ ︷︷ ︸

u

=


f1
f2
f3
...


︸ ︷︷ ︸

f

.

Using a Jacobi smoother for this linear system Au = f with
damping parameter α gives

uk+1 = uk + αD−1(f − Auk ) = uk − α

1− λ∆t
Auk .
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Local Fouriermode Analysis (LFA)

Insert a Fourier mode in time,

uk
n := C k

ωe
iωn∆t ,

into the Jacobi smoother

uk+1
n = uk

n −
α

1− λ∆t
((1− λ∆t)uk

n − uk
n−1),

on one line (LFA does not see initial conditions)

C k+1
ω = C k

ω − α
1−λ∆t

(
(1− λ∆t)C k

ω − C k
ωe
−iω∆t

)
=

(
1− α + αe−iω∆t

1−λ∆t

)
C k
ω .

The convergence factor is thus

ρ(ω, α) =

(
1− α +

αe−iω∆t

1− λ∆t

)
, ω∆t ∈ (−π, π).
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Smoothing Properties of Jacobi in time

Left: Smoothing properties for the Jacobi smoother applied
to the Dahlquist equation.

Right: α∗ = ∆t2λ2−3∆tλ+2
∆t2λ2−4∆tλ+4

for best smoothing properties.

Damped Jacobi is a good smoother in time !?
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Jacobi Smoother for Dahlquist’s Equation: k = 0
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Jacobi Smoother for Dahlquist’s Equation: k = 1
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Jacobi Smoother for Dahlquist’s Equation: k = 2
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Jacobi Smoother for Dahlquist’s Equation: k = 4
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Jacobi Smoother for Dahlquist’s Equation: k = 8
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Jacobi Smoother for Dahlquist’s Equation: k = 16
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Two Grid Method in Time

t
0 = t0 t1 t2 t3 t4 t5 t6 t7 = T

uk+ 1
3 = S(f ,uk , ν1) ; % presmoothing

uk+ 2
3 = uk+ 1

3 + PA−1
c R(f − Auk+ 1

3 ) % coarse correction

uk+1 = S(f ,uk+ 2
3 , ν2) ; % postsmoothing

P =



1
2
1
1
2

1
2
1
1
2

1
2
1
1
2


R = 1

2P
T (full weighting) or injection

R =

 0 1 0
0 1 0

0 1 0



Ac =

 1− λ2∆t
−1 1− λ2∆t

−1 1− λ2∆t

 or Ac = RAP



PinT Summer
School

Martin J. Gander

Parabolic Multigrid

Smoother

Coarse Correction

Early Remedies

Time Multigrid

Dahlquist Equation

FLA

Results

Space-Time
Multigrid

Block Jacobi

FLA

Numerical Experiments

Scalings

Multigrid
Interpretations

Parareal

Parareal as a geometric
multigrid method

AMG

MGRIT

PFASST

Integral Deferred Correction

Classical

Parallel IDC

Convergence, and best choice of α
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error after 30 2-grid iterations, 1 Jacobi smoothing step

Left: error decay for the two grid method applied to the
Dahlquist equation.

Right: dependence on the choice of the relaxation parameter
α of the error after k = 30 iterations
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Space-Time Multigrid
All at once system for the heat equation in space-time:

(I − L∆t)
−I (I − L∆t)

−I . . .
. . .

. . .


︸ ︷︷ ︸

A


u1

u2

u3
...


︸ ︷︷ ︸

u

=


f 1

f 2

f 3
...


︸ ︷︷ ︸

f

,

Key idea: need to divide by the diagonal block I − L∆t, as
we divided by 1− λ∆t in Jacobi for the Dahlquist equation,
i.e. use a block Jacobi smoother.

Insert a Fourier mode in space and time

uk
n,j := C k

ω,ξe
iωn∆te iξj∆x

into the block Jacobi smoother

uk+1
n = uk

n − α(I − L∆t)−1((I − λL∆t)uk
n − uk

n−1)

= (1− α)uk
n + α(I − L∆t)−1uk

n−1
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Smoothing Analysis
For the term Luk

n−1 we get with uk
n,j := C k

ω,ξe
iωn∆te iξj∆x

1

∆x2
(un−1,j+1 − 2un−1,j + un−1,j−1)

= e−iω∆t 1

∆x2

(
e iξ∆x − 2 + e−iξ∆x

)
C k
ω,ξe

iωn∆te iξj∆x

= e−iω∆t 2(cos ξ∆x − 1)

∆x2
C k
ω,ξe

iωn∆te iξj∆x .

The symbol of the block Jacobi smoother

(1− α)uk
n + α(I − L∆t)−1uk

n−1

is thus for ω∆t ∈ (−π, π), ξ∆x ∈ (−π, π)

ρ(ω, ξ, α) = 1− α

(
1− e iω∆t

1 + 2 ∆t
∆x2 (1− cos ξ∆x)

)
G, Neumüller (2016): Analysis of a New Space-Time Parallel

Multigrid Algorithm for Parabolic Problems
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Fourier Local Mode Analysis Results

|ρ| for ∆t = ∆x = 0.1 and α = 0.25, 0.5, 0.75, 0.9
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Time and Space Smoothing Lemmas

Lemma (Optimal parameter for smoothing in time)

The best choice for α to obtain smoothing in time is

α∗ =
1

2
.

Then all high frequencies in time, ω ∈ ±( π
2∆t ,

π
∆t ) are

multiplied by at least the factor 1√
2

.

Proof. The derivative w.r.t ω,

∂ω|ρ(ω, ξ, α)|2 = −2α(1− α)
∆x2∆t sin(ω∆t)

2∆t(1− cos(ξ∆x)) + ∆x2

is negative for positive ω, and positive for negative ω. Thus
the maximum for ω ∈ ( π

2∆t ,
π

∆t ) is attained at ω = π
2∆t , and

similarly for negative ω at ω = − π
2∆t .

The derivative with respect to ξ at ω = π
2∆t is

∂ξ|ρ(
π

2∆t
, ξ, α)|2 = − 4α2∆x5∆t sin(ξ∆x)

(2∆t(1− cos(ξ∆x)) + ∆x2)3
,
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Proof continued

which shows that the maximum is attained at ξ = 0. The
worst smoothing in time is thus at (ω, ξ) = (± π

2∆t , 0), and
the convergence factor value in modulus at this location is

|ρ(± π

2∆t
, 0, α)|2 = (1− α)2α2,

and this value is minimized for α = α∗ = 1
2 , for which

|ρ(± π
2∆t , 0,

1
2 )| = 1√

2
.
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Lemma (Condition for smoothing in space)

With α = α∗ = 1
2 , high frequencies in space ξ ∈ ±( π

2∆x ,
π

∆x )
are at least damped by the factor 1√

2
if

µ :=
∆t

∆x2
≥ 1√

2
.

Proof.
By the derivatives from the previous Lemma, the least
damping is at ω = 0 and ξ = ± π

2∆x , namely

|ρ(0,
π

2∆x
, α∗)| =

µ+ 1

2µ+ 1

and

µ+ 1

2µ+ 1
≤ 1√

2
⇐⇒

√
2(µ+ 1) ≤ 2µ+ 1

⇐⇒
√

2− 1 ≤ (2−
√

2)µ ⇐⇒ µ ≥ 1√
2
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Theorem (Space-time multigrid coarsening)

In the Space-Time Multi-Grid (STMG) method with block
Jacobi smoother applied to the all at once space time system
of the one dimensional heat equation discretized by
Backward Euler in time and centered finite differences in
space, and the best choice of the relaxation parameter for
time smoothing α∗ = 1

2 , one can always perform coarsening
in time, and in space one can also use coarsening provided
the condition ∆t

∆x2 ≥ 1√
2

holds on the current level.

Proof.
For the two level method, this is a direct consequence of the
two Lemmas, and the extension to the multilevel case
follows by the fact that for the multigrid method, the two
grid correction is simply applied recursively, with the bounds
not depending on the levels.
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Multigrid Iterations 3D Heat Equation
One V-cycle in space to invert the diagonal blocks

space time levels
levels 1 2 3 4 5 5 7 8 9 10

0 7 8 8 8 7 7 7 8 8 8
1 7 8 8 8 7 7 7 8 8 8
2 8 8 8 8 8 7 8 8 8 8
3 8 9 8 8 8 8 8 8 8 8
4 10 9 9 9 8 8 8 8 8 8
5 10 10 10 9 9 8 8 8 8 8

Solution times in seconds:

dof forward substitution multigrid

2 304 3.30 0.06
23 296 3.69 1.02

218 880 9.80 13.19
1 912 576 95.27 136.99

16 015 104 1031.43 1155.12
131 120 896 9970.89 10416.90
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3D Heat Equation Weak Scaling Results
cores time steps dof iter time fwd. sub.

1 2 59 768 7 28.8 19.0
2 4 119 536 7 29.8 37.9
4 8 239 072 7 29.8 75.9
8 16 478 144 7 29.9 152.2

16 32 956 288 7 29.9 305.4
32 64 1 912 576 7 29.9 613.6
64 128 3 825 152 7 29.9 1 220.7

128 256 7 650 304 7 29.9 2 448.4
256 512 15 300 608 7 30.0 4 882.4
512 1 024 30 601 216 7 29.9 9 744.2

1 024 2 048 61 202 432 7 30.0 19 636.9
2 048 4 096 122 404 864 7 29.9 38 993.1
4 096 8 192 244 809 728 7 30.0 81 219.6
8 192 16 384 489 619 456 7 30.0 162 551.0

16 384 32 768 979 238 912 7 30.0 313 122.0
32 768 65 536 1 958 477 824 7 30.0 625 686.0
65 536 131 072 3 916 955 648 7 30.0 1 250 210.0

131 072 262 144 7 833 911 296 7 30.0 2 500 350.0
262 144 524 288 15 667 822 592 7 30.0 4 988 060.0

Vulcan BlueGene/Q Supercomputer in Livermore (by M. Neumüller)
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3D Heat Equation Strong Scaling Results
cores time steps dof iter time

1 512 15 300 608 7 7 635.2
2 512 15 300 608 7 3 821.7
4 512 15 300 608 7 1 909.9
8 512 15 300 608 7 954.2

16 512 15 300 608 7 477.2
32 512 15 300 608 7 238.9
64 512 15 300 608 7 119.5

128 512 15 300 608 7 59.7
256 512 15 300 608 7 30.0

512 524 288 15 667 822 592 7 15 205.9
1 024 524 288 15 667 822 592 7 7 651.5
2 048 524 288 15 667 822 592 7 3 825.3
4 096 524 288 15 667 822 592 7 1 913.4
8 192 524 288 15 667 822 592 7 956.6

16 384 524 288 15 667 822 592 7 478.1
32 768 524 288 15 667 822 592 7 239.3
65 536 524 288 15 667 822 592 7 119.6

131 072 524 288 15 667 822 592 7 59.8
262 144 524 288 15 667 822 592 7 30.0

Vulcan BlueGene/Q Supercomputer in Livermore (by M. Neumüller)
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Parareal as a Geometric Multigrid Method
Consider the Dahlquist equation

du

dt
= λu in (0,T ), u(0) = u0

N coarse time intervals and M fine time steps in every
coarse time interval, 0 = t0 < t1 < t2 < . . . < tMN = T ,
tm − tm−1 = ∆t, forward Euler

Au :=


1
−φ 1

. . .
. . .

−φ 1




u0

u1
...

uMN

 =


u0

0
...
0

 =: f ,

where φ := 1 + λ∆t. Eliminate every second unknown
1
−φ2 1

. . .
. . .

−φ2 1




u0

u2
...

uMN

 =


u0

0
...
0

 .
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Eliminate more unknowns, keeping only every M-th one,

ÃŨ :=


1

−F̃ 1
. . .

. . .

−F̃ 1




Ũ0

Ũ1
...

ŨN

 =


u0

0
...
0

 =: f̃ ,

where F̃ := (1 + λ∆t)M . Note that at the coarse nodes
Tn := nM∆t we have Ũn = unM . Now approximate

Ã :=


1

−F̃ 1
. . .

. . .

−F̃ 1

 ≈


1

−G̃ 1
. . .

. . .

−G̃ 1

 =: M̃

with G̃ := 1 + λ∆T one forward Euler step, and consider
the preconditioned stationary iteration

Ũ
k+1

= Ũ
k

+ M̃−1(f − ÃŨ
k

).
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Theorem
The stationary iteration is equal to Parareal, Ũk

n = Uk
n for

k = 1, 2, . . . and n = 0, 1, . . . ,N, provided initially we have
Ũ0

n = U0
n for n = 0, 1, . . . ,N.

Proof. The preconditioned stationary iteration computes
1

−G̃ 1
. . .

. . .

−G̃ 1





Ũk+1
0

Ũk+1
1
...

Ũk+1
N

−


Ũk
0

Ũk
1
...

Ũk
N




=


u0 − Ũk

0

F̃ Ũk
0 − Ũk

1
...

F̃ Ũk
N−1 − Ũk

N

 .

The n-th line in this iteration reads
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Proof continued

−G̃ Ũk+1
n−1 + G̃ Ũk

n−1 + Ũk+1
n − Ũk

n = F̃ Ũk
n−1 − Ũk

n ,

and we obtain after simplification

Ũk+1
n = F̃ Ũk

n−1 + G̃ Ũk+1
n−1 − G̃ Ũk

n−1.

Applying parareal to the Dahlquist problem using forward
Euler, we get for the parareal fine integrator

F (Tn+1,Tn, v) := (1 + λ∆t)Mv ≡ F̃ v

and for the coarse integrator

G (Tn+1,Tn, v) := (1 + λ∆T )v ≡ G̃ v ,

and thus the updating formula coincides with Parareal.

Remark: This result also holds for any other integrator since
we never used the precise form of Forward Euler, e.g. for
Backward Euler φ = (1− λ∆t)−1, F̃ = (1− λ∆t)−M ,
G̃ = (1− λ∆T )−1.
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Parareal as a geometric multigrid method
For solving approximately the linear system

Au = f ,

a geometric two grid method would, starting with the initial
guess u0, compute for k = 0, 1, 2, . . .

ũk := Smooth(A, f ,uk );

e := A−1
c R(f − Aũk );

uk+1 := ũk + Pe;

To identify parareal with geometric multigrid, we need a
block Jacobi splitting

A = M̃J − ÑJ ,

where M̃J is a block diagonal matrix with diagonal blocks of
size M ×M, except for the first block which is one bigger
because of the initial condition of the problem.
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Theorem (Parareal=Multigrid+Agressive Coarsening)

Using one presmoothing step with the modified block Jacobi
smoother

u` = u`−1 + EM̃−1
J (f − Au`−1),

where E is the identity, except with zeros at the coarse
nodes, injection for P and R := PT , and Ac = M̃, then the
two grid algorithm produces the parareal iterates at the
coarse nodes, Uk

n = uk
nM , provided one starts with an initial

approximation u0 that satisfies U0
n = u0

nM .

Proof. By induction on k: statement holds trivially for k = 0
by assumption.

We thus assume that for k , uk
nM = Uk

n for n = 0, 1, . . . ,N,
and prove this for k + 1. After one step with the modified
block Jacobi smoother, ũk contains the fine solutions
starting at each initial condition Uk

n ,

ũk
nM+j = (1 + λ∆t)jUk

n , j = 0, 1, . . . ,M − 1,
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except for the coarse variables which have not changed
because of E , we still have ũk

nM = Uk
n for n = 0, 1, . . . ,N.

Now with the coarse operator Ac = M̃ we need to solve

M̃e = R(f − Aũk ).

Looking at any line n > 0, with R the transpose of injection,
the definition of A and M̃, and that f is zero except in the
first component

en − G (en−1) = −Uk
n + (1 + λ∆t)(ũk

nM−1).

Now from the Jacobi smoother, we have

ũk
nM−1 = (1 + λ∆t)M−1uk

(n−1)M = (1 + λ∆t)M−1Uk
n−1,

and thus with the definition of F

en = −Uk
n + F (Uk

n−1) + G (en−1),

Now performing the last of the 3 multigrid steps, with P
injection, and ũk

nM = Uk
n , we get on the lines nM

uk+1
nM = F (Uk

n−1) + G (en−1). (∗)
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We next note that at step n − 1 can be written as

en−1 = −Uk
n−1 + F (Uk

n−2) + G (en−2) = −Uk
n−1 + uk+1

(n−1)M ,

where we used (*) for the last step, and inserting this into
(*) and using linearity gives

uk+1
nM = F (Uk

n−1) + G (uk+1
(n−1)M)− G (Uk

n−1),

which concludes the proof by induction, since this is the
recurrence formula for the parareal algorithm, and
uk+1

0 = Uk+1
0 = u0.

Remarks:

I This Theorem also holds in the non-linear context [G,
Vandewalle 2007]

I The special block Jacobi smoother is only modifying the
fine nodes, and is thus not convergent, and the second
iteration will not produce any modification.

I Multilevel Parareal by recursion on M̃
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Algebraic Multigrid (AMG)

Ruge, Stüben (1987): Algebraic multigrid

“Thus, the set of variables on level h can be split
into two disjoint subsets: the first one contains the
variables also represented in the coarser level (C-
variables), and the second one is just the comple-
mentary set (F-variables).”

Reordering the system matrix accordingly yields

Au =

[
Aff Afc

Acf Acc

](
uf

uc

)
=

(
f f

f c

)
= f .

A block-LU factorization is given by[
Aff Afc

Acf Acc

]
=

[
I

AcfA
−1
ff I

] [
Aff

Scc

] [
I A−1

ff Afc

I

]
,

with the Schur complement Scc := Acc − AcfA
−1
ff Afc.
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One can express then the inverse of A explicitly,

A−1=

[
I −A−1

ff Afc

I

][
A−1

ff

S−1
cc

][
I

−AcfA
−1
ff I

]
.

Defining the coarse restriction and extension matrices by

Rc := [−AcfA
−1
ff I ], Pc :=

[
−A−1

ff Afc

I

]
,

and the more simple fine restriction and extension matrices
by

Rf := [I 0], Pf := RT
f ,

one can obtain the following surprising result

Lemma
The inverse A−1 of the reordered system matrix A can be
expressed as a sum of an inverse just acting on the fine
variables, and a complementary inverse,

A−1 = Pc(RcAPc )−1Rc + Pf (Rf APf )−1Rf .
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Proof.
By a direct calculation: we first compute for the coarse nodes

RcAPc = [−AcfA
−1
ff I ]

[
Aff Afc

Acf Acc

] [
−A−1

ff Afc

I

]
= [−AcfA

−1
ff I ]

[
0

Acc − AcfA
−1
ff Afc

]
= Scc.

For the fine nodes, we get with the simple Pf and Rf

Rf APf = Aff .

We thus get

Pc (RcAPc)−1Rc + Pf (Rf APf )−1Rf

=

[
−A−1

ff Afc

I

]
S−1

cc [−AcfA
−1
ff I ] +

[
I
0

]
A−1

ff [I 0]

=

[
I −A−1

ff Afc

I

] [
A−1

ff

S−1
cc

] [
I

−AcfA
−1
ff I

]
.
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This result is interesting when we look at a classical
stationary iterative method with preconditioner M ≈ A,

uk+1 = uk + M−1(f − Auk ).

The error ek := u − uk satisfies

ek+1 = (I −M−1A)ek .

Using for M−1 = A−1, the error propagator (I −M−1A)
vanishes identically, but writing it down explicitly gives

0 = (I − A−1A)

= I − Pc(RcAPc )−1RcA− Pf (Rf APf )−1Rf A,

which is an optimal additive correction scheme between fine
and coarse nodes, it converges in one iteration (nilpotent).

For a multiplicative correction scheme, we compute(
I − Pc(RcAPc )−1RcA

) (
I − Pf (Rf APf )−1Rf A

)
= I − Pc(RcAPc)−1RcA− Pf (Rf APf )−1Rf A

+Pc (RcAPc )−1RcAPf (Rf APf )−1Rf A,

and the last term cancels, because the middle term
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RcAPf = [−AcfA
−1
ff I ]

[
Aff Afc

Acf Acc

] [
I
0

]
= [−AcfA

−1
ff I ]

[
Aff

Acf

]
= 0.

Therefore, the multiplicative correction scheme in this exact
setting coincides with the additive one.

AMG idea:

I approximate the operators

Rc = [−AcfA
−1
ff I ], Pc :=

[
−A−1

ff Afc

I

]
in these exact correction schemes, i.e. A−1

ff

I very different from geometric multigrid based on
smoothing and coarse correction.
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MGRIT (Multigrid Reduction in Time)

Friedhoff, Falgout, Kolev, MacLachlan, Schroder
(2013): A multigrid-in-time algorithm for solving evolution
equations in parallel

“Our algorithm is based on interpreting the parareal
time integration method as a two level reduction
scheme, and developing a multilevel algorithm from
this viewpoint”

Theorem
In the parareal algorithm, the error propagation operator is

(I − PcM̃
−1RcA)(I − Pf (Rf APf )−1Rf A),

where M̃ is the coarse time stepping matrix.

The only approximation is therefore M̃ ≈ RcAPc in the
AMG setting of Parareal.
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Proof.
The error propagation operator of Parareal on the coarse
variables is

(I − M̃−1Ã).

To write this for all variables, we need R := [0 I ] selecting
the coarse nodes. Noting that

Pc =

[
−A−1

ff Afc

I

]
,

leaves coarse nodes invariant, and extends to fine by fine
solves the error propagation operator of Parareal for all
variables is

Pc(I − M̃−1Ã)R.

Now Ã = RcAPc = Scc is the Schur complement in the proof
of the Lemma, since Ã was obtained by elimination of the
fine unknowns. Thus the error propagation operator becomes

Pc(I − M̃−1Ã)R = Pc (I − M̃−1RcAPc )R

= (I − PcM̃
−1RcA)PcR,
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Proof continued
and since

PcR =

[
−A−1

ff Afc

I

]
[0 I ] =

[
0 −A−1

ff Afc

0 I

]
is identical to

I − Pf (Rf APf )−1Rf A = I −
[
A−1

ff

0

] [
Aff Afc

]
=

[
0 −A−1

ff Afc

0 I

]
,

the error propagation operator of parareal is indeed

(I − PcM̃
−1RcA)(I − Pf (Rf APf )−1Rf A),

which concludes the proof.

Remark: Multilevel Parareal by recursion on M̃.
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MGRIT and FCF relaxation
Idea of MGRIT: replace the F -relaxation, the second term
in the error propagation operator, by

(I−Pf (Rf APf )−1Rf A)(I−RT (RART )−1RA)(I−Pf (Rf APf )−1Rf A)

The C-relaxation term (I − RT (RART )−1RA) closes
precisely the gap left by the F-relaxation to make a second
F-relaxation useful (cf the E matrix in the geometric setting)

Theorem
The two level MGRIT algorithm with FCF -smoother
computes the same iterations as the parareal algorithm with
overlap of one coarse time interval,

Uk+1
0 = u0, Uk+1

1 = F̃ u0,

Uk+1
n = F̃ F̃Uk

n−2 + G̃Uk+1
n−1 − G̃ F̃Uk

n−2.
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Proof.
Need an interpretation of the added CF -relaxation in MGRIT
in terms of the parareal algorithm. For the C -part, we obtain

I − RT (RART )−1RA = I −
[

0 0
0 A−1

cc

] [
Aff Afc

Acf Acc

]
=

[
I 0

−A−1
cc Acf 0

]
,

and multiplying with the F -part leads to[
I 0

−A−1
cc Acf 0

] [
0 −A−1

ff Afc

0 I

]
=

[
0 −A−1

ff Afc

0 A−1
cc AcfA

−1
ff Afc

]
.

Now this is multiplied from the left by the parareal error
propagation operator Pc(I − M̃−1Ã)R, and we get

Pc(I − M̃−1Ã)R

[
0 −A−1

ff Afc

0 A−1
cc AcfA

−1
ff Afc

]
= Pc (I − M̃−1Ã)[0 A−1

cc AcfA
−1
ff Afc].
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Proof continued
Now parareal is only operating on the coarse variables, so we
obtain for them the error propagation operator of MGRIT to
be

(I − M̃−1Ã)A−1
cc AcfA

−1
ff Afc. (∗)

Now recall the Schur complement

Scc = Acc − AcfA
−1
ff Afc,

which equals Ã, and since in parareal Acc = I , because the
original matrix only contains ones on the diagonal, we get

I − Ã = I − (Acc − AcfA
−1
ff Afc) = A−1

cc AcfA
−1
ff Afc,

and inserting this into (*) we see that the error propagation
operator of MGRIT on the coarse variables is simply

(I − M̃−1Ã)(I − Ã).

This corresponds to the two step iterative procedure

Y k = Uk + f − ÃUk ,

M̃Uk+1 = M̃Y k + f − ÃY k .
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Proof continued

Writing this componentwise, we obtain

Y k
0 = u0, Y k

n = F̃Uk
n−1

Uk
0 = u0, Uk+1

n = F̃Y k
n−1 + G̃Uk+1

n−1 − G̃Y k
n−1.

Substituting the values of Y k
n into the equation for Uk+1

n

then yields the result.

Corollary

The two level MGRIT algorithm with the F (CF )ν-smoother
computes the same iterations as the parareal algorithm using
ν∆T overlap.
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PFASST
PFASST stands for Parallel Full Approximation Scheme in
Space-Time, and there are several steps in the development
PFASST:

Minion (2010): A hybrid parareal spectral deferred
corrections method

“This paper investigates a variant of the parareal
algorithm first outlined by Minion and Williams in
2008 that utilizes a deferred correction strategy
within the parareal iterations.”

Deferred correction: consider the initial value problem

u′ = f (u), u(0) = u0.

We can rewrite this problem in integral form

u(t) = u(0) +

∫ t

0
f (u(τ))dτ.
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Integral Deferred Correction
Let ũ(t) be an approximation with error e(t) := u(t)− ũ(t).
Inserting u(t) = ũ(t) + e(t) into the integral form, we get

ũ(t) + e(t) = u(0) +

∫ t

0
f (ũ(τ) + e(τ))dτ. (∗)

Let F (u) := u(0) +
∫ t

0 f (u(τ))dτ − u(t) from the integral
form, the residual r(t) of the approximate solution ũ(t) is

r(t) := F (ũ) = ũ(0) +

∫ t

0
f (ũ(τ))dτ − ũ(t),

and thus from (*) the error satisfies the equation

e(t) = u(0) +

∫ t

0
f (ũ(τ) + e(τ))dτ − ũ(t)

= r(t) +

∫ t

0
f (ũ(τ) + e(τ))− f (ũ(τ))dτ,

or written as a differential equation

e ′(t) = r ′(t) + f (ũ(t) + e(t))− f (ũ(t)).
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Integral Deferred Correction
Idea of integral deferred correction:

1. use e.g. Forward Euler to get a first approximate
solution of the ODE,

ũm+1 = ũm + ∆tf (ũm), for m = 0, 1, . . . ,M − 1.

2. With these values, compute the residual at the points
tm, m = 0, 1, . . . ,M using a high order quadrature
formula.

3. Solve the error equation in differential form again with
Forward Euler,

em+1 = em + rm+1 − rm + ∆t(f (ũm + em)− f (ũm)).

4. Add this correction to obtain a new approximation

ũm + em,

One can show that the order has increased by one, and one
can continue this process to increase the order up to the
order of the quadrature used.
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Integral Deferred Correction as Iteration
This is an iterative method to compute the Runge-Kutta
method corresponding to the quadrature rule used to
approximate the integral: with u0 obtained by forward Euler,
we have the non-linear fixed point iteration

uk = F (uk−1, u0).

Classical Use of Integral Deferred Correction:
partition the time interval [0,T ] into subintervals [Tj−1,Tj ]
j = 1, 2, . . . , J, and then perform K iterations on each:

uK
0,M = u0;

for j = 1 : J
compute u0

j as Euler approximation on [Tj−1,Tj ];
for k = 1 : K

uk
j = F (uk−1

j , uK
j−1,M);

end;
end;

This is purely sequential, like a time stepping scheme
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Idea Proposed by Minion (2010)
Replace the inner updating formula by (see Womble later)

uk
j = F (uk−1

j , uk
j−1,M), (note the lower case k !).

Can now perform spectral deferred corrections in parallel.

Minion (2010) combines this with a coarse correction from
parareal, thus using a more and more accurate fine
integrator.

PFASST Emmett, Minion (2012) uses this as a smoother
in a FAS scheme in space-time:

“The method is iterative with each iteration con-
sisting of deferred correction sweeps performed
alternately on fine and coarse space-time dis-
cretizations. The coarse grid problems are formu-
lated using a space-time analog of the full approx-
imation scheme popular in multigrid methods
for nonlinear equations.”
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