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Quotes

Émile Picard (1883): Sur l’application des méthodes
d’approximations successives à l’étude de certaines équations
différentielles ordinaires,

“Les méthodes d’approximation dont nous
faisons usage sont théoriquement susceptibles
de s’appliquer à toute équation, mais elles ne
deviennent vraiment intéressantes pour l’étude des
propriétés des fonctions définies par les équations
différentielles que si l’on ne reste pas dans les
généralités et si l’on envisage certaines classes
d’équations”
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Quotes

Keith Miller (1965): Numerical Analogs to the Schwarz
Alternating Procedure

“Schwarz’s method presents some intriguing possi-
bilities for numerical methods.”

Ekachai Lelarasmee and Albert E. Ruehli and Alberto
L. Sangiovanni-Vincentelli (1982): The Waveform
Relaxation Method for Time-Domain Analysis of Large Scale
Integrated Circuits

“The spectacular growth in the scale of integrated
circuits being designed in the VLSI era has gener-
ated the need for new methods of circuit simula-
tion. “Standard” circuit simulators, such as SPICE
and ASTAP, simply take too much CPU time and
too much storage to analyze a VLSI circuit.”
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Typical decomposition for these methods

0

T

Ω1 Ω2 Ω3 Ω4

x

t

Ω

Decomposition of the space-time domain for time parallel
methods based on domain decomposition
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Method of Successive Approximations

Ernest Lindelöf (1894): Sur l’application des méthodes
d’approximations successives à l’étude des intégrales réelles
des équations différentielles ordinaires

“La présente étude a pour but de donner une ex-
position succincte de la méthode d’approximations
successives de M. Picard en tant qu’elle s’applique
aux équations différentielles ordinaires”

William Edmund Milne (1953): Numerical solution of
differential equations

“Actually this method of continuing the computa-
tion is highly inefficient and is not recommended.”
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For Ordinary Differential equations

∂tu(t) = f (t,u(t)) t ∈ (0,T ],
u(0) = u0,

For existence, Picard writes the problem in integral form,

u(t) = u(0) +

∫ t

0
∂tu(τ)dτ = u0 +

∫ t

0
f (τ,u(τ))dτ.

Picard iteration: compute for k = 0, 1, 2, . . .

uk+1(t) = u0 +

∫ t

0
f (τ,uk(τ))dτ.

A sequence of problems using only quadrature was much
easier to handle at the time of Picard than an ODE.
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Convergence Analysis

Theorem (Lindelöf 1894: Superlinear Convergence)

If f is continuous, and uniformly Lipschitz with Lipschitz
constant L in its second argument for all t ∈ (0,T ],

||f (t, v)− f (t,w)|| ≤ L||v −w || v ,w ∈ Rd ,

then the Picard iteration converges for any u0(t) on
bounded time intervals t ∈ [0,T ], and the iterates satisfy
the superlinear error estimate

||u − uk ||T ≤
(LT )k

k!
||u − u0||T ,

where ||u||T := max0≤t≤T ||u(t)|| denotes the maximum
norm in [0,T ].
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Proof.

Subtracting the Picard iteration from the integral form of
the problem gives

u(t)− uk(t)=u0+

∫ t

0
f (τ,u(τ))dτ−u0−

∫ t

0
f (τ,uk−1(τ))dτ

=

∫ t

0
f (τ,u(τ))− f (τ,uk−1(τ))dτ.

We can now take the norm on both sides, and use the
Lipschitz condition on f ,

||u(t)− uk(t)||≤
∫ t

0
||f (τ,u(τ))− f (τ,uk−1(τ))||dτ

≤L
∫ t

0
||u(τ)− uk−1(τ)||dτ.

Since this inequality also holds for k − 1, k − 2 and so on,
we can introduce it on the right, and obtain
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Proof continued

||u(t)−uk(t)||≤L
∫ t

0
L

∫ τ

0
||u(τ2)− uk−1(τ2)||dτ2dτ

≤Lk
∫ t

0

∫ τ

0
· · ·
∫ τk−1

0
||u(τk)− u0(τk)||dτk . . . dτ2dτ.

We can now take the maximum of the initial error
||u(τk)− u0(τk)|| in time out of the integral, and then start
integrating one integral after the other,

||u(t)−uk(t)||≤Lk
∫ t

0

∫ τ

0
· · ·
∫ τk−1

0
dτk . . . dτ2dτ ||u − u0||t

=Lk
∫ t

0

∫ τ

0
· · ·
∫ τk−2

0
τk−1dτk−1 . . . dτ2dτ ||u − u0||t

=Lk
∫ t

0

∫ τ

0
· · ·
∫ τk−3

0

τ2
k−2

2
dτk−2 . . . dτ2dτ ||u − u0||t

=Lk
∫ t

0

∫ τ

0
· · ·
∫ τk−4

0

τ3
k−3

3!
dτk−3 . . . dτ2dτ ||u − u0||t
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Proof continued

...

=Lk
∫ t

0

τk−1

(k − 1)!
dτ ||u − u0||t

=
Lktk

k!
||u − u0||t .

So we have shown that

||u(t)−uk(t)|| ≤ Lktk

k!
||u − u0||t .

The expression on the right is monotonically increasing in t,
so we can bound it by setting t := T , and then taking the
maximum in t on the left gives the result.

Remarks:
I Same type of term as for the parareal convergence

estimate. (see quote of Saha, Stadel and Tremaine)
I Method is however not very efficient (see Milne quote)
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Classical Waveform Relaxation

Ekachai Lelarasmee and Albert E. Ruehli and Alberto
L. Sangiovanni-Vincentelli (1982): The Waveform
Relaxation Method for Time-Domain Analysis of Large Scale
Integrated Circuits, 1982

“The Waveform Relaxation (WR) method is an iter-
ative method for analyzing nonlinear dynamical sys-
tems in the time domain. The method, at each
iteration, decomposes the system into several dy-
namical subsystems, each of which is analyzed for
the entire given time interval.”

Waveform relaxation methods were invented in the research
laboratory of IBM in Yorktown Heights in 1982 for VLSI
design, motivated by the extremely rapid growth of
integrated circuits.
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Historical Example: MOS ring oscillator

2

+5 +5 +5

v v v

u

1 3

Using the laws of Ohm and Kirchhoff, the equations for such
a circuit can be written in form of a system of ordinary
differential equations,

∂tv1(t) = f1(v1(t), v2(t), v3(t)), v1(0) = v0
1 ,

∂tv2(t) = f2(v1(t), v2(t), v3(t)), v2(0) = v0
2 ,

∂tv3(t) = f3(v1(t), v2(t), v3(t)), v3(0) = v0
3 .
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Decomposition of the MOS ring oscillator
+5 +5 +5

u

v
k+1

1
v

2

k+1
v

3

k+1

k
v

2
v

1

k k
v

3

k
v

2
v

1

k
v

3

k

The waveform relaxation algorithm

∂tv
k
1 = f1(vk1 , v

k−1
2 , vk−1

3 ), vk1 (0) = v0
1 ,

∂tv
k
2 = f2(vk−1

1 , vk2 , v
k−1
3 ), vk2 (0) = v0

2 ,

∂tv
k
3 = f3(vk−1

1 , vk−1
2 , vk3 ). vk3 (0) = v0

3 .

Start with some initial guess v0
1 (t), v0

3 (t), v0
3 (t).
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Historical Convergence Study from 1982

Ruehli et al: “Note that since the oscillator is highly non
unidirectional due to the feedback from v3 to the NOR gate,
the convergence of the iterated solutions is achieved with the
number of iterations being proportional to the number of
oscillating cycles of interest”



PinT Summer
School

Martin J. Gander

Introduction

Quotes

Decomposition

Successive
Approximations

Picard Iteration

Convergence

Waveform
Relaxation

MOS ring example

WR algorithm

Convergence

WR based on DD

Quotes

Schwarz WR (Heat)

Linear Convergence

Superlinear Convergence

Comparison with WR

Schwarz WR (Wave)

Finite Step Convergence

Optimized Schwarz WR

Convergence

OSWR for Waves

Parareal SWR

Jacobi and Gauss-Seidel variants

Instead of the Jacobi waveform relaxation algorithm

∂tv
k
1 = f1(vk1 , v

k−1
2 , vk−1

3 ), vk1 (0) = v0
1 ,

∂tv
k
2 = f2(vk−1

1 , vk2 , v
k−1
3 ), vk2 (0) = v0

2 ,

∂tv
k
3 = f3(vk−1

1 , vk−1
2 , vk3 ). vk3 (0) = v0

3 .

one could also use a Gauss-Seidel variant

∂tv
k
1 = f1(vk1 , v

k−1
2 , vk−1

3 ), vk1 (0) = v0
1 ,

∂tv
k
2 = f2(vk1 , v

k
2 , v

k−1
3 ), vk2 (0) = v0

2 ,
∂tv

k
3 = f3(vk1 , v

k
2 , v

k
3 ). vk3 (0) = v0

3 .

How can one define in general partition functions for systems
of ODEs?
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Convergence Analysis
∂tu(t) = f (t,u(t)) t ∈ (0,T ],

u(0) = u0.
Introduce a partition function f̃ (t, v ,w) such that

f̃ (t, v , v) = f (t, v) ∀v ∈ Rd , t ∈ (0,T ].

For an initial guess u0(t), WR computes for k = 0, 1, 2, . . .

∂tuk+1(t) = f̃ (t,uk+1(t),uk(t)) t ∈ (0,T ],
uk+1(0) = u0.

I White, Odeh, Sangiovanni-Vincentelli, Ruehli (1985): linear
convergence estimate.

I Nevanlinna (1989): superlinear estimate for linear matrix
splittings A = M − N

I Bellen, Zennaro (1993): “By some standard analysis, we can
easily get. . . ”

I Burrage (1993): “it is easy to prove”.

I Vandewalle (1993): linear convergence using weighted norms.

I In’t Hout (1995): quotes a convergence estimate citing
Bellen et al, Burrage, Nevanlinna, and Lindelöf.
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Gronwall lemma in integral form

Lemma (Gronwall Lemma (1919))

Let u(t), α(t) and β(t) be continuous functions on [0,T ]. If
β(t) ≥ 0 and

u(t) ≤ α(t) +

∫ t

0
β(s)u(s)ds ∀t ∈ [0,T ],

then

u(t) ≤ α(t) +

∫ t

0
α(s)β(s)e

∫ t
s β(τ)dτds ∀t ∈ [0,T ].

Proof.
Exercise.

We can now give an elementary general convergence proof
for waveform relaxation methods.
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General convergence result

Theorem (Superlinear Convergence)

If the partition function f̃ (t, v ,w) is Lipschitz continuous in
both arguments uniformly for all t ∈ [0,T ],

||f̃ (t, v1,w)− f̃ (t, v2,w)|| ≤ L1||v1 − v2||,
||f̃ (t, v ,w1)− f̃ (t, v ,w2)|| ≤ L2||w1 −w2||,

then the waveform relaxation algorithm satisfies the error
estimate

||u − uk ||T ≤ eL1T
(L2T )k

k!
||u − u0||T ,

where ||u||T := max0≤t≤T ||u(t)|| denotes again the
maximum norm in [0,T ].
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Proof.
Subtract the integral form of the waveform relaxation
iteration from the integral form of the problem,

u(t)− uk(t) =

∫ t

0
f (s,u(s))− f̃ (s,uk(s),uk−1(s))ds.

We now use that the partition function satisfies
f (s,u(s)) = f̃ (s,u(s),u(s)), and adding and subtracting
the term f̃ (s,uk(s),u(s)), we get

u(t)− uk(t) =

∫ t

0
f̃ (s,u(s),u(s))− f̃ (s,uk(s),u(s))ds

+

∫ t

0
f̃ (s,uk(s),u(s))− f̃ (s,uk(s),uk−1(s))ds.

We can thus take the norm on both sides and use the
Lipschitz conditions (similarity with parareal proof)

||u(t)−uk(t)||≤L1

∫ t

0
||u(s)−uk(s)||ds+L2

∫ t

0
||u(s)−uk−1(s)||ds.
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Proof continued
Setting β(t) := L1 and α(t) := L2

∫ t
0 ||u(s)− uk−1(s)||ds,

we can apply the Gronwall Lemma and obtain

||u(t)− uk(t)|| ≤ L2

∫ t

0
||u(s)− uk−1(s)||ds

+L1L2

∫ t

0

∫ s

0
||u(τ)− uk−1(τ)||dτeL1(t−s)ds.

We now want to show by induction on k that the bound
holds. For k = 1, we obtain by taking the maximum of the
norms out of the integrals, estimating s by its upper bound
t, and integration

||u(t)− u1(t)|| ≤ L2

∫ t

0
||u(s)− u0(s)||ds

+L1L2

∫ t

0

∫ s

0
||u(τ)− u0(τ)||dτeL1(t−s)ds

≤ L2||u − u0||t
(
t + L1

∫ t

0
seL1(t−s)ds

)
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Proof continued

≤ L2||u − u0||t
(
t + L1

∫ t

0
seL1(t−s)ds

)
≤ L2||u − u0||t

(
t + L1t

∫ t

0
eL1(t−s)ds

)
= L2||u − u0||t

(
t − t

(
1− eL1t

))
= L2te

L1t ||u − u0||t .

We thus obtain for all t ∈ [0,T ] that

||u(t)−u1(t)|| ≤ L2te
L1t ||u(t)−u0(t)||t ≤ L2Te

L1T ||u−u0||T ,
and taking the maximum on the left concludes for k = 1.
So assume that the bound holds for k − 1, and we show it
for k: inserting this induction hypothesis into

||u(t)− uk(t)||≤L2

∫ t

0
||u(s)− uk−1(s)||ds

+L1L2

∫ t

0

∫ s

0
||u(τ)− uk−1(τ)||dτeL1(t−s)ds,
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Proof continuted
we obtain by taking the maximum of the norms out of the
integrals, switching the order of integration in the second
term, and canceling two terms after integration

||u(t)− uk(t)|| ≤ L2

∫ t

0

eL1s
(L2s)k−1

(k − 1)!
||u − u0||sds

+L1L2

∫ t

0

∫ s

0

eL1τ
(L2τ)k−1

(k − 1)!
||u − u0||τdτeL1(t−s)ds

≤ L2||u−u0||t
(∫ t

0

eL1s
(L2s)k−1

(k−1)!
ds+L1

∫ t

0

∫ s

0

eL1τ
(L2τ)k−1

(k−1)!
dτeL1(t−s)ds

)
= L2||u−u0||t

(∫ t

0

eL1s
(L2s)k−1

(k−1)!
ds+L1

∫ t

0

∫ t

τ

eL1(t−s)dseL1τ
(L2τ)k−1

(k−1)!
dτ

)
= L2||u−u0||t

(∫ t

0

eL1s
(L2s)k−1

(k−1)!
ds−

∫ t

0

(
1−eL1(t−τ)

)
eL1τ

(L2τ)k−1

(k−1)!
dτ

)
= L2||u − u0||teL1t

∫ t

0

(L2τ)k−1

(k − 1)!
dτ = eL1t

(L2t)k

k!
||u − u0||t ,

which concludes the proof by monotonicity in t of the right.
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Waveform Relaxation with Domain Decomposition
Juan Camilo Meza and William W. Symes (1987):
Domain Decomposition Algorithms for linear Hyperbolic
Equations
“Much of the current work in the application of domain

decomposition techniques has been in the area of elliptic partial

differential equations, with very little attention being given to

hyperbolic equations [...] We take as our model problem the

Dirichlet initial/boundary value problem for the one dimensional

wave equation. We shall subdivide this problem into problems on

smaller subdomains and synthesize the global solution out of the

subdomain solutions, using the finite propagation speed and

superposition properties of solutions.”

G (1996): Overlapping Schwarz for linear and nonlinear
parabolic problems
“Motivated by the work of Bjørhus (1995), we show how one can

use overlapping domain decomposition to obtain a waveform

relaxation algorithm for the semi-discrete heat equation which

converges at a rate independent of the mesh parameter.”
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Schwarz Waveform Relaxation, Heat Equation

∂tu(x , t) = ∂xxu(x , t) + f (x , t) in Ω× (0,T ], Ω := (0, L),
u(x , 0) = u0(x) in Ω,
u(0, t) = g0(t) in (0,T ],
u(L, t) = gL(t) in (0,T ].

In analogy to the circuits, we partition the domain Ω into
overlapping subdomains Ω1 = (0, β) and Ω1 = (α, L),
α < β. The parallel Schwarz waveform relaxation relaxation
algorithm then computes for k = 0, 1, 2, . . .

∂tu
k+1
1 (x , t) = ∂xxu

k+1
1 (x , t) + f (x , t) in Ω1 × (0,T ],

uk+1
1 (x , 0) = u0(x) in Ω1,

uk+1
1 (0, t) = g0(t) in (0,T ],

uk+1
1 (β, t) = uk2 (β, t) in (0,T ],

∂tu
k+1
2 (x , t) = ∂xxu

k+1
2 (x , t) + f (x , t), in Ω2 × (0,T ],

uk+1
2 (x , 0) = u0(x) in Ω2,

uk+1
2 (L, t) = gL(t) in (0,T ],

uk+1
2 (α, t) = uk1 (α, t) in (0,T ].
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Initial guess, alternating variant

Need an initial guess for the solution at x = α and x = β,
i.e. u0

1(α, t) and u0
2(β, t) to start the iteration.

The alternating Schwarz waveform relaxation algorithm is
very similar, one just has to replace the last interface update
by

uk+1
2 (α, t) = uk+1

1 (α, t) in (0,T ],

but then the iteration can not be performed in parallel any
more on the two subdomains.

The name Schwarz waveform relaxation comes from the fact
that the decomposition is overlapping like in the classical
overlapping Schwarz method for steady problems, and time
dependent problems are solved in each iteration like in
waveform relaxation.
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Numerical Experiment

Heat equation with f (x , t) := x4(1− x)4 + 10 sin(8t)

Solution over a long time interval T = 5 (left) and a short
time interval T = 0.1 (right).
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Schwarz WR Iteration 1 T = 5
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Schwarz WR Iteration 3 T = 5
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Error Decay as a Function of Iterations
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Left: Schwarz waveform relaxation over the long time
interval: linear convergence

Right: Schwarz waveform relaxation over the short time
interval: superlinear convergence
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Error Equations
The error ekj (x , t) := u(x , t)− ukj (x , t) satisfies the
homogeneous PDE

∂te
k
j = ∂t(u(x , t)− ukj (x , t))

= ∂xxu(x , t) + f (x , t)− ∂xxukj (x , t)− f (x , t)

= ∂xxe
k
j (x , t).

The initial condition for the error is zero,

ekj (x , 0) = u(x , 0)− ukj (x , 0) = u0(x)− u0(x) = 0,

and also on the original boundaries of the domain the error
vanishes,

ek1 (0, t) = u(0, t)− uk1 (0, t) = g0(t)− g0(t) = 0,

and

ek2 (L, t) = u(L, t)− uk2 (L, t) = gL(t)− gL(t) = 0.
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Convergence Analysis

Iteration for the error:

∂te
k+1
1 (x , t) = ∂xxe

k+1
1 (x , t) in Ω1 × (0,T ],

ek+1
1 (x , 0) = 0 in Ω1,

ek+1
1 (0, t) = 0 in (0,T ],

ek+1
1 (β, t) = ek2 (β, t) in (0,T ],

∂te
k+1
2 (x , t) = ∂xxe

k+1
2 (x , t), in Ω2 × (0,T ],

ek+1
2 (x , 0) = 0 in Ω2,

ek+1
2 (L, t) = 0 in (0,T ],

ek+1
2 (α, t) = ek1 (α, t) in (0,T ].

Need to study how the errors ekj converge to zero over long
and short time intervals!
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Steady State Bounds for Long Time

Consider the steady state problems for fixed t

∂xx ẽ
k+1
1 (x) = 0 in Ω1,

ẽk+1
1 (0) = 0,

ẽk+1
1 (β) = ||ek+1

1 (β, ·)||∞,

∂xx ẽ
k+1
2 (x) = 0, in Ω2,

ẽk+1
2 (L) = 0,

ẽk+1
2 (α) = ||ek+1

2 (α, ·)||∞.

Lemma (First Lemma)

The errors of the Schwarz waveform relaxation algorithm are
bounded by the steady state solutions; we have for j = 1, 2
and all k

|ek+1
j (x , t)| ≤ ẽk+1

j (x) ∀x ∈ Ωj , t ∈ [0,∞).
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Proof.
The difference dj(x , t) := ẽk+1

j (x)− ek+1
j (x , t) satisfies

∂tdj(x , t) = ∂t(ẽ
k+1
j (x)− ek+1

j (x , t)) = −∂tek+1
j (x , t)

= −∂xxek+1
j (x , t) = ∂xx(ẽk+1

j (x)− ek+1
j (x , t))

= ∂xxdj(x , t),

On the initial line dj(x , 0) = 0, and on the boundary
d1(0, t) = 0 and d1(β, t) = ||ek+1

1 (β, ·)||∞ − ek+1
1 (β, t) ≥ 0.

Maximum principle =⇒ d1(x , t) ≥ 0 (also d2(x , t) ≥ 0).
Analogously from the sum d̃j(x , t) := ẽk+1

j (x) + ek+1
j (x , t)

we obtain d̃1(x , t) ≥ 0 and d̃2(x , t) ≥ 0. Therefore

dj(x , t) = ẽk+1
j (x)− ek+1

j (x , t) ≥ 0,

d̃j(x , t) = ẽk+1
j (x) + ek+1

j (x , t) ≥ 0,

which implies that

−ẽk+1
j (x) ≤ ek+1

j (x , t) ≤ ẽk+1
j (x),

and thus the bound in modulus.
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Lemma (Second Lemma)

The solutions of the steady upper bound satisfy

ẽk+1
1 (α) =

α

β
||ek+1

1 (β, ·)||∞

ẽk+1
2 (β) =

L− β
L− α

||ek+1
2 (α, ·)||∞.

Proof.
The solutions of the steady problems are simply the affine
functions

ẽk+1
1 (x) =

x

β
||ek+1

1 (β, ·)||∞, ẽk+1
2 (x) =

L− x

L− α
||ek+1

2 (α, ·)||∞,

as one can see by inspection, and thus the result follows by
evaluating at x = α and x = β.
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Theorem (Linear Convergence Estimate)

For any 0 < α < β < L, the parallel Schwarz waveform
relaxation algorithm converges, and satisfies

sup
t∈[0,∞)

x∈Ωj

|u(x , t)−u2k
j (x , t)|≤

(
α(1−β)

β(1−α)

)k

sup
t∈[0,∞)

|u(Γj , t)−u0
j (Γj , t)|

where Γ1 := β and Γ2 := α.

Proof. Using the first and second Lemma, we obtain

sup
t∈[0,∞)

|ek+1
1 (α, t)| ≤ ẽk+1

1 (α) =
α

β
||ek+1

1 (β, ·)||∞,

sup
t∈[0,∞)

|ek+1
2 (β, t)| ≤ ẽk+1

2 (β) =
L− β
L− α

||ek+1
2 (α, ·)||∞.

Transmission conditions in parallel Schwarz WR:

ek+1
1 (β, t) = ek2 (β, t), ek+1

2 (α, t) = ek1 (α, t)
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Proof continued

||ek+1
1 (α, ·)||∞ ≤

α

β
||ek2 (β, ·)||∞ ≤

α

β

L− β
L− α

||ek−1
1 (α, ·)||∞,

||ek+1
2 (β, ·)||∞ ≤

L− β
L− α

||ek1 (α, ·)||∞ ≤
α

β

L− β
L− α

||ek−1
2 (β, ·)||∞.

Now using again the transmission conditions
ek+2

2 (α, t) = ek+1
1 (α, t) and ek+2

1 (β, t) = ek+1
2 (β, t) on the

left, and ek2 (α, t) = ek−1
1 (α, t) and ek1 (β, t) = ek−1

2 (β, t) on
the right, we obtain by induction

||e2k
2 (α, ·)||∞ ≤

(
α

β

L− β
L− α

)k

||e0
2 (α, ·)||∞,

||e2k
1 (β, ·)||∞ ≤

(
α

β

L− β
L− α

)k

||e0
1 (β, ·)||∞.

The maximum principle implies that the error inside the
subdomains is smaller than on the interfaces,

sup
t∈[0,∞)

x∈Ωj

|e2k
j (x , t)| ≤ ||e2k

j (Γj , ·)||∞, Γ1 := β, Γ2 := α.
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Superlinear Convergence

Lemma (Third Lemma)

The errors of the Schwarz WR algorithm are bounded by

|ek+1
j (x , t)| ≤ ēk+1

j (x , t),

where the functions ēk+1
j (x , t) are solutions of

∂t ē
k+1
1 (x , t) = ∂xx ē

k+1
1 (x , t) in (−∞, β)× (0,T ],

ēk+1
1 (x , 0) = 0 in (−∞, β),

ēk+1
1 (β, t) = ||ek2 (β, ·)||t in (0,T ],

∂t ē
k+1
2 (x , t) = ∂xx ē

k+1
2 (x , t), in (α,∞)× (0,T ],

ēk+1
2 (x , 0) = 0 in (α,∞),

ēk+1
2 (α, t) = ||ek1 (α, ·)||t in (0,T ].

Proof.
The difference dj(x , t) := ēk+1

j (x , t)− ek+1
j (x , t) (and sum)

satisfy again homogeneous heat equations with zero IC and
non-negative BC. Hence ēk+1

j (x , t) bounds |ek+1
j (x , t)|.
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Study of SWR on unbounded spatial domains

∂tu
k+1
1 (x , t) = ∂xxu

k+1
1 (x , t) + f (x , t) in (−∞, β)× (0,T ],

uk+1
1 (x , 0) = u0(x) in (−∞, β),

uk+1
1 (β, t) = uk2 (β, t) in (0,T ],

∂tu
k+1
2 (x , t) = ∂xxu

k+1
2 (x , t) + f (x , t), in (α,∞)× (0,T ],

uk+1
2 (x , 0) = u0(x) in Ω2,

uk+1
2 (α, t) = uk1 (α, t) in (0,T ],

Theorem (Superlinear Convergence Estimate)

For any 0 < α < β < L, the parallel SWR algorithm
converges, and satisfies

||u2k
j (Γj , ·)−u(Γj , ·)||T ≤ erfc(

(β − α)k√
T

)||u0
j (Γj , ·)−u(Γj , ·)||T ,

where Γ1 := β and Γ2 := α and erfc(x) := 2√
π

∫∞
x e−s

2
ds.
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Proof.

Using the Laplace transform

f̂ (s) :=

∫ ∞
0

f (t)e−stdt

the error equations become

sêk+1
1 (x , s) = ∂xx ê

k+1
1 (x , s) in (−∞, β),

êk+1
1 (β, s) = êk2 (β, s)

sêk+1
2 (x , s) = ∂xx ê

k+1
2 (x , s), in (α,∞),

êk+1
2 (α, s) = êk1 (α, s).

The solutions which go to zero when x goes to ±∞ are

êk+1
1 (x , s) = êk2 (β, s)e

√
s(x−β), êk+1

2 (x , s) = êk1 (α, s)e−
√
s(x−α),

because <(s) > 0.
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Proof continued
We thus obtain when evaluating on the interfaces

êk+1
1 (α, s) = êk2 (β, s)e

√
s(α−β)

êk+1
2 (β, s) = êk1 (α, s)e−

√
s(β−α)

and introducing one into the other leads to

êk+1
1 (α, s) = e−2

√
s(β−α)êk−1

1 (α, s)

êk+1
2 (β, s) = e−2

√
s(β−α)êk−1

2 (β, s).

We thus obtain by induction

ê2k+1
1 (α, s) = e−2k

√
s(β−α)ê1

1 (α, s)

ê2k+1
2 (β, s) = e−2k

√
s(β−α)ê1

2 (β, s).

Now from the transmission conditions, we have
ê2k+2

2 (α, s) = ê2k+1
1 (α, s) and ê2k+2

1 (β, s) = ê2k+1
2 (β, s)

which we can replace on the left, and similarly
ê2

2 (α, s) = ê1
1 (α, s) and ê2

1 (β, s) = ê1
2 (β, s) which we replace

on the right, which then leads to the relation
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Proof continued
ê2k

2 (α, s) = (ρ(s))k ê0
2 (α, s), ê2k

1 (β, s) = (ρ(s))k ê0
1 (β, s),

with the convergence factor ρ(s) := e−2k
√
s(β−α). Now the

inverse Laplace transform of ρ(s) is given by

G (t) =
k(β − α)√

πt3
e−

k2(β−α)2

t ,

which one can obtain by a direct computation, or with Maple

with(inttrans);

G:=invlaplace(exp(-2*C*sqrt(s)),s,t) assuming positive;

The Convolution Theorem of Laplace transforms then gives

e2k
1 (β, t) =

∫ t

0
e0

1 (β, t − τ)G (τ)dτ,

and we can thus bound

|e2k
1 (β, t)|≤

∫ t

0
|e0

1 (β, t − τ)G (τ)|dτ ≤ ||e0
1 (β, ·)||T

∫ T

0
G (τ)dτ

= erfc(
(β−α)k√

T
)||e0

1 (β, ·)||T (similarly for |e2k
1 (α, t)|)
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Bounded Spatial Domains

Corollary

The same superlinear convergence result also holds for
bounded domains and subdomains.

Proof.
Using the Third Lemma, the errors in the Schwarz waveform
relaxation algorithm on bounded domains are bounded by
the errors obtained by the same iteration on unbounded
domains. It suffices therefore to start the iteration in the
unbounded domain iteration with the errors from the
bounded domain iteration ||e0

j (Γj , ·)||t to obtain the
result.

The superlinear convergence result also holds in the more
general situation of semilinear parabolic partial differential
equations [Gander:1998], and in higher spatial dimensions
[G, Zhao:2002].
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Comparison with classical WR
Schwarz waveform relaxation converges faster than classical
waveform relaxation: using Stirlings formula

k! ∼
√

2πk
(
k
e

)k
, we obtain for the classical waveform

relaxation

eL1T
(L2T )k

k!
∼ eL1T

(L2Te)k√
2πk

e−k log k ,

while we have for Schwarz waveform relaxation with
δ := β − α denoting the overlap

erfc(
δk√
T

) ∼
√
T√
πδk

e−
δ2

T
k2
,

These asymptotic results can also be obtained directly with
Maple,

asympt((C*T)^k/k!,k,2) assuming positive;

asympt(erfc(k*d/sqrt(T)),k,2) assuming positive;
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Schwarz WR for the Wave Equation
∂ttu(x , t) = c2∂xxu(x , t) + f (x , t) in (0, L)× (0,T ],

u(x , 0) = u0(x) in (0, L),
∂tu(x , 0) = ũ0(x) in (0, L),

u(0, t) = g0(t) in (0,T ],
u(L, t) = gL(t) in (0,T ].

Parallel SWR with Ω1 = (0, β) and Ω1 = (α, L), α < β:

∂ttu
k+1
1 (x , t) = c2∂xxu

k+1
1 (x , t) + f (x , t) in Ω1 × (0,T ],

uk+1
1 (x , 0) = u0(x) in Ω1,

∂tu
k+1
1 (x , 0) = ũ0(x) in Ω1,

uk+1
1 (0, t) = g0(t) in (0,T ],

uk+1
1 (β, t) = uk2 (β, t) in (0,T ],

∂ttu
k+1
2 (x , t) = c2∂xxu

k+1
2 (x , t) + f (x , t), in Ω2 × (0,T ],

uk+1
2 (x , 0) = u0(x) in Ω2,

∂tu
k+1
2 (x , 0) = ũ0(x) in Ω2,

uk+1
2 (L, t) = gL(t) in (0,T ],

uk+1
2 (α, t) = uk1 (α, t) in (0,T ].
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A Numerical Experiment

Source function f (x , t) := x4(1− x)4 + 10 sin(8t) as for the
heat equation. Solution for T = 5 and wave speed c := 0.2.
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SWR iteration 1
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Convergence Analysis

Lemma
The solution of the wave equation with zero source term and
initial conditions, f (x , t) = 0 and u0(x) = ũ0(x) = 0, and
also gL(t) = 0, is for t ≤ T := 1

c L given by

u(x , t) =

{
0 if t ≤ 1

c x ,
g0(t − 1

c x) if t > 1
c x .

For a classical solution, g0(t) must also satisfy
g0(0) = g ′0(0) = g ′′0 (0) = 0.

If instead g0(t) = 0 and gL(t) 6= 0, then the solution is

u(x , t) =

{
0 if t ≤ 1

c (L− x),
gL(t + 1

c (L− x)) if t > 1
c (L− x),

and again for a classical solution, we need
gL(0) = g ′L(0) = g ′′L (0) = 0.



PinT Summer
School

Martin J. Gander

Introduction

Quotes

Decomposition

Successive
Approximations

Picard Iteration

Convergence

Waveform
Relaxation

MOS ring example

WR algorithm

Convergence

WR based on DD

Quotes

Schwarz WR (Heat)

Linear Convergence

Superlinear Convergence

Comparison with WR

Schwarz WR (Wave)

Finite Step Convergence

Optimized Schwarz WR

Convergence

OSWR for Waves

Parareal SWR

Proof.

x

T

0 L

t

slope 1
c

u(x , t) = g0(t − 1
c x)

u(x , t) = 0

x

T

0 L

t

slope − 1
c

u(x , t)=gL(t+ 1
c (L−x))

u(x , t) = 0

For g0(t) 6= 0, we obtain where the solution is non-zero

utt − c2uxx = ∂ttg0(t − 1

c
x)− c2∂xxg0(t − 1

c
x)

= g ′′0 (t − 1

c
x)− c2g ′′0 (t − 1

c
x)

1

c2
= 0,

and otherwise trivially utt − c2uxx = 0.
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Proof continued

Also accross the line t = 1
c x the equation holds because of

the assumption that g0(0) = g ′0(0) = g ′′0 (0) = 0.

Since on the boundary we also have

u(0, t) = g0(t) for all t, and u(L, t) = 0 for 0 ≤ t ≤ T = 1
c L,

and on the initial line at t = 0

u(x , 0) = ∂tu(x , 0) = 0,

the solution is the classical solution of this wave equation
problem. Similarly also for the second case.

Note that for t > T = 1
c L the solution is not of this form

any more, since there is a reflection from the zero boundary
condition, so the Lemma only holds for t ≤ T as stated.
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Convergence Result for the Wave Equation

Theorem (Convergence in a finite number of steps)

For the wave equation, the Schwarz waveform relaxation
method converges in a finite number of steps: on the
interfaces x = α, β, we have for 0 ≤ t ≤ T

u(α, t)− uk1 (α, t) = u(β, t)− uk2 (β, ·) = 0

as soon as k > Tc
β−α .

This is a bit like Gaussian elimination, which also finishes the
solution of linear systems in a finite number of steps!
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Proof.
The equations for the errors
ek+1
j (x , t) := u(x , t)− uk+1

j (x , t) satisfy

∂tte
k+1
1 (x , t) = c2∂xxe

k+1
1 (x , t) in Ω1 × (0,T ],

ek+1
1 (x , 0) = 0 in Ω1,

∂te
k+1
1 (x , 0) = 0 in Ω1,

ek+1
1 (0, t) = 0 in (0,T ],

ek+1
1 (β, t) = ek2 (β, t) in (0,T ],

∂tte
k+1
2 (x , t) = c2∂xxe

k+1
2 (x , t), in Ω2 × (0,T ],

ek+1
2 (x , 0) = 0 in Ω2,

∂te
k+1
2 (x , 0) = 0 in Ω2,

ek+1
2 (L, t) = 0 in (0,T ],

ek+1
2 (α, t) = ek1 (α, t) in (0,T ].

For k = 0, the interface errors e0
2 (β, t) and e0

1 (α, t) are
arbitrary, but the initial errors are zero and also on the
boundaries at x = 0, L the errors are zero.
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Proof continued
Using the Lemma

e1
1 (x , t) = 0 for t ≤ 1

c (β − x), e1
2 (x , t) = 0 for t ≤ 1

c (x − α)

x

T

0 L

t

slope 1
cslope − 1

c

e1
1 (x , t) = 0 e1

2 (x , t) = 0

e2
1 (x , t) = 0 e2

2 (x , t) = 0

Therefore on the interfaces for the next iteration, we have

e1
1 (α, t) = 0 for t ≤ 1

c (β − α), e1
2 (β, t) = 0 for t ≤ 1

c (β − α).
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Proof continued

This implies that below the two new blue characteristics, the
errors e2

1 (x , t) and e2
2 (x , t) will be zero.

We thus obtain by induction on the interfaces that

ek1 (α, t) = 0 for t ≤ k
c (β − α), ek2 (β, t) = 0 for t ≤ k

c (β − α).

Hence if k ≥ Tc
β−α , we have ek1 (α, t) = ek2 (β, t) = 0 for

t ≤ T which concludes the proof.

Remarks:

I Result also holds for many subdomains and general
hyperbolic equations

I For hyperbolic problems, there is no convergence result
on long time windows

I This algorithms is related to tent pitching
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Optimized Schwarz Waveform Relaxation

Better transmission conditions between subdomains; e.g. for
the heat equation

∂tu
k+1
1 (x , t) = ∂xxu

k+1
1 (x , t) + f (x , t) in Ω1 × (0,T ],

uk+1
1 (x , 0) = u0(x) in Ω1,

uk+1
1 (0, t) = g0(t) in (0,T ],

(∂x + p)uk+1
1 (β, t) = (∂x + p)uk2 (β, t) in (0,T ],

∂tu
k+1
2 (x , t) = ∂xxu

k+1
2 (x , t) + f (x , t), in Ω2 × (0,T ],

uk+1
2 (x , 0) = u0(x) in Ω2,

uk+1
2 (L, t) = gL(t) in (0,T ],

(∂x − p)uk+1
2 (α, t) = (∂x − p)uk1 (α, t) in (0,T ].

In a more general setting, ∂x represents the outer normal
derivative ∂n of the respective subdomain at the interface.
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Convergence Analysis

Assume for simplicity as before that the domain Ω = R and
the subdomains are Ω1 = (−∞, β) and Ω2 = (α,∞).

The error equations after a Laplace transform are

sêk+1
1 (x , s) = ∂xx ê

k+1
1 (x , s) in (−∞, β),

(∂x + p)êk+1
1 (β, s) = (∂x + p)êk2 (β, s),

sêk+1
2 (x , s) = ∂xx ê

k+1
2 (x , s), in (α,∞),

(∂x − p)êk+1
2 (α, s) = (∂x − p)êk1 (α, s).

The solutions which go to zero when x goes to ±∞ are of
the form

êk+1
1 (x , s) = C k+1

1 (s)e
√
s(x−β), êk+1

2 (x , s) = C k+1
2 (s)e−

√
s(x−α)

because <(s) > 0.
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Convergence Factor
To determine C k+1

j , j = 1, 2, use the transmission
conditions: at x = β

(∂x + p)êk+1
1 (β, s) = C k+1

1 (s)(
√
s + p) = (∂x + p)êk2 (β, s)

= C k
2 (s)(−

√
s + p)e−

√
s(β−α),

and similarly at x = α

(∂x − p)êk+1
2 (α, s) = C k+1

2 (s)(−
√
s − p) = (∂x − p)êk1 (α, s)

= C k
1 (s)(

√
s − p)e

√
s(α−β).

Solving for the constant C k
2 (s) at iteration k , we obtain

C k
2 (s) =

√
s − p

−
√
s − p

e−
√
s(β−α)C k−1

1 (s).

Inserting this into the first relation yields

C k+1
1 (s) =

(√
s − p√
s + p

)2

e−2
√
s(β−α)C k−1

1 (s).
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Convergence Factor
Similarly also for the second constant,

C k+1
2 (s) =

(√
s − p√
s + p

)2

e−2
√
s(β−α)C k−1

2 (s).

The convergence factor of the optimized Schwarz
waveform relaxation algorithm is therefore

ρR(s, p) =

(√
s − p√
s + p

)2

e−2
√
s(β−α),

and we obtain by induction for j = 1, 2

C 2k
j (s) = (ρR(s, p))k C 0

j (s).

This implies for the Laplace transformed error functions

ê2k
1 (x , s) = (ρR(s, p))k ê0

1 (x , s), ê2k
2 (x , s) = (ρR(s, p))k ê0

2 (x , s).

Remark: p :=
√
s makes ρR ≡ 0, optimal Schwarz

waveform relaxation, but p :=
√
s leads after a Laplace

back-transform to non-local operators in time, the so-called
Dirichlet to Neumann (DtN) operators.
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Optimized Schwarz waveform relaxation
Use optimized local approximations of the DtN operators:
take the Laplace transform formula

êkj (x , s) =

∫ ∞
0

ekj (x , t)e−stdt,

extend the errors ekj (x , t) by zero continuously for t < 0:

êkj (x , s) =

∫ ∞
−∞

ekj (x , t)e−stdt =

∫ ∞
−∞

ekj (x , t)e−ηte−iωtdt.

The Laplace transform can thus be interpreted as a Fourier
transform in time of the weighted error functions
ekj (x , t)e−ηt .

Using Parseval-Plancherel, we obtain for the L2 norm the
same if measured either in Laplace space or in time,

||êkj (x , η + i ·)||2 = ||ekj (x , ·)e−η·||2.
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Weighted L2 Convergence Estimate

||e2k
j (x , ·)e−η·||2 = ||ê2k

j (x , η + i ·)||2
= ||(ρR(η + i ·, p))2k ê0

j (x , η + i ·)||2
≤ supω∈R |ρR(η + iω, p)|2k ||ê0

j (x , η + i ·)||2
= supω∈R |ρR(η + iω, p)|2k ||e0

j (x , ·)||2.

To make supω∈R |ρR(η + iω, p)| small we set
√
s := x + iy

√
s =
√
η+iω =

√
η+
√
η2+ω2

2
±i

√
−η+

√
η2+ω2

2
=: x±iy .

We can then compute

|ρR(s, p)|2 =

∣∣∣∣√s − p√
s + p

∣∣∣∣2 ∣∣∣e−√s(β−α)
∣∣∣2

=

∣∣∣∣x + iy − p

x + iy + p

∣∣∣∣2 ∣∣∣e−(x+iy)(β−α)
∣∣∣2

=
(x − p)2 + y2

(x + p)2 + y2
e−2x(β−α).
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Convergence, even without overlap!
The convergence factor

|ρR(s, p)|2 =
(x − p)2 + y2

(x + p)2 + y2
e−2x(β−α) < 1

for all ω ∈ R, if η > 0 and p > 0, since then x > 0 even if
α = β.

Convergence factor with overlap (left) and without (right).
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Optimization of p
Need to solve the min-max problem

p = argmin
p>0

sup
ω∈R
|ρR(η + iω, p)|2.

I x and y are even functions of ω, consider only ω ≥ 0

I ω = 0 is the constant mode in time, excluded by zero
initial error.

I Heuristics for smallest and largest ω:

t

ekj

0
T∆t ∆t

sin( π
2T t)

sin( πT t)

sin(2 πT t) sin( π
∆t t)
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Numerically Relevant Min-Max Problem

We can minimize in the L2 norm setting η = 0,

p = argmin
p>0

sup
ω∈[ωmin,ωmax]

|ρR(iω, p)|2.

For η = 0, x =

√
η+
√
η2+ω2

2 and y =

√
−η+
√
η2+ω2

2 concide,
so set

ξ :=

√
ω

2
= x ≡ y ,

and with overlap parameter δ := β − α, we get

R(ξ, p, δ) := |ρR(iω, p)|2 =
(ξ − p)2 + ξ2

(ξ + p)2 + ξ2
e−2ξδ,

and we need to optimize in the new parameter
ξ ∈ [ξmin, ξmax] with ξmin :=

√
ωmin

2 =
√

π
4T and

ξmax :=
√

ωmax
2 =

√
π

2∆t .
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Examples of the Convergence Factor

Convergence factors, left with overlap, a good choice seems
p ≈ 2, and right without overlap a good choice is p ≈ 3.
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Theorem (Optimized choice of p)

The solution of the min-max problem without overlap,
δ = 0, is given by

p∗ =
√

2ξminξmax,

and the associated convergence factor is bounded by

R(ξmin, p
∗, 0) = ξmax+ξmin−p∗

ξmax+ξmin+p∗ .

With overlap δ > 0, the solution is for δ small given by

p∗ ∼
(
ξ2

min
δ

) 1
3
,

and the associated convergence factor is bounded by

R(ξmin, p
∗, δ) = 1− 4ξ

1
3
minδ

1
3 .
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Proof.
Without overlap, δ = 0, the solution problem is achieved by
equioscillation,

R(ξmin, p
∗, 0) = R(ξmax, p

∗, 0),

as one can see from the derivative

∂pR(ξ, p, 0) =
4ξ(p2 − 2ξ2)

(p2 + 2pξ + 2ξ2)2
,

which shows that when p <
√

2ξmin increasing p decreases
R(ξ, p, 0) for all relevant ξ ∈ [ξmin, ξmax]. Similarly when
p >
√

2ξmax, decreasing p decreases R(ξ, p, 0) also for all
relevant ξ ∈ [ξmin, ξmax]. Therefore the optimal p∗ must lie
in the interval [

√
2ξmin,

√
2ξmax].

The derivative also shows that R(ξmin, p, 0) increases when p
starts increasing from

√
2ξmin, and R(ξmax, p, 0) decreases.

By continuity, the minimum is thus achieved by the
equioscillation. Solving this equation gives directly the
optimized choice p∗ and resulting R(ξmax, p

∗, 0).
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Proof continued

With overlap δ > 0, the solution is also by equioscillation,

R(ξmin, p
∗, δ) = R(ξ̄, p∗, δ),

where ξ̄ is an interior maximum,

ξ̄ =

√
p(1 +

√
1− δ2p2 − 2δp)
√

2δ
.

The equioscillation equation can however not be solved in
closed form, only asymptotically, which leads to the results
in the theorem.
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Maple is very useful here

R:=((xi-p)^2+xi^2)/((xi+p)^2+xi^2)*exp(-2*xi*delta);

delta:=0;

factor(diff(R,p));

xi:=ximin;R1:=R;

xi:=ximax;R2:=R;

psols:=solve(R1=R2,p);

p:=psols[2];

simplify(R);

asympt(R,ximax,2);

where the last command gives

R(ξmax, p
∗, 0) ∼ 1− 2

√
2

√
ξmin

ξmax
= 1− 2

7
4
√
ξmin

π
1
4

∆t
1
4 .
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More Maple for the Overlapping Case

R:=((xi-p)^2+xi^2)/((xi+p)^2+xi^2)*exp(-2*xi*delta);

xi:=ximin;R1:=R; # keep first maximum

xi:=’xi’;

Rp:=simplify(diff(R,xi));

xi:=xib;

R2:=R; # keep second maximum

R2p:=Rp; # and derivative there

xi:=’xi’;

xisols:=solve(R2p,xib); # find zero derivative

xib:=xisols[1];

p:=Cp*delta^(-1/3); # educated guess for p*

se1:=series(R1,delta,1);

se2:=series(R2,delta,1) assuming positive;

Cpsols:=solve(op(2,se1)=op(2,se2),Cp);

Cp:=Cpsols[1];

p; # asymptotic optimized p*

se1; # and convergence factor
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Non-overlapping OSWR error, Iteration 4, T = 5
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Convergence by Energy Estimates

Theorem
Without overlap, δ = β − α = 0, the Schwarz waveform
relaxation algorithm on the domain Ω = (0, L) with
subdomains Ω1 = (0, α) and Ω2 = (α, L) converges, i.e.

lim
k→∞

sup
t∈(0,T ]

∫
Ωj

(u(x , t)− ukj (x , t))2dx = 0.

Proof. We multiply the error equations

∂te
k
1 (x , t) = ∂xxe

k
1 (x , t) in Ω1 × (0,T ],

ek1 (x , 0) = 0 in Ω1,
ek1 (0, t) = 0 in (0,T ],

(∂x + p)ek1 (α, t) = (∂x + p)ek−1
2 (α, t) in (0,T ],

∂te
k
2 (x , t) = ∂xxe

k
2 (x , t), in Ω2 × (0,T ],

ek2 (x , 0) = 0 in Ω2,
ek2 (L, t) = 0 in (0,T ],

(∂x − p)ek2 (α, t) = (∂x − p)ek−1
1 (α, t) in (0,T ],
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Proof continued

by ekj and integrate over the domain Ωj to obtain∫ α

0
(∂te

k
1 (x , t))ek1 (x , t)dx −

∫ α

0
(∂xxe

k
1 (x , t))ek1 (x , t)dx = 0,∫ L

α
(∂te

k
2 (x , t))ek2 (x , t)dx −

∫ L

α
(∂xxe

k
2 (x , t))ek2 (x , t)dx = 0.

Now integration by parts in space, and using that integration
in space and derivatives in time commute and that the errors
on the outer boundaries vanish, we get

1

2
∂t

∫ α

0
(ek1 (x , t))2dx+

∫ α

0
(∂xe

k
1 (x , t))2dx−(∂xe

k
1 (α, t))ek1 (α, t)=0,

1

2
∂t

∫ L

α
(ek2 (x , t))2dx+

∫ L

α
(∂xe

k
2 (x , t))2dx+(∂xe

k
2 (α, t))ek2 (α, t)=0.
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Lions Trick
Now we use for the terms at the interface α the identity

ab =
1

4p
((a + pb)2 − (a− pb)2)

that holds for all a, b ∈ R, and obtain

1

2
∂t

∫ α

0
(ek1 (x , t))2dx +

∫ α

0
(∂xe

k
1 (x , t))2dx

+
1

4p
(∂xe

k
1 (α, t)− pek1 (α, t))2

=
1

4p
(∂xe

k
1 (α, t) + pek1 (α, t))2,

1

2
∂t

∫ L

α
(ek2 (x , t))2dx +

∫ L

α
(∂xe

k
2 (x , t))2dx

+
1

4p
(∂xe

k
2 (α, t) + pek2 (α, t))2

=
1

4p
(∂xe

k
2 (α, t)− pek2 (α, t))2.
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Proof continued
Using the transmission conditions, we can replace the right
hand sides by terms from the previous iteration,

1

4p
(∂xe

k
1 (α, t)+pek1 (α, t))2 =

1

4p
(∂xe

k−1
2 (α, t)+pek−1

2 (α, t))2,

1

4p
(∂xe

k
2 (α, t)−pek2 (α, t))2 =

1

4p
(∂xe

k−1
1 (α, t)−pek−1

1 (α, t))2.

Now summing the two energy estimates with the rhs
replaced yields

1

2
∂t

∫ α

0
(ek1 (x , t))2dx +

∫ α

0
(∂xe

k
1 (x , t))2dx

+
1

2
∂t

∫ L

α
(ek2 (x , t))2dx +

∫ L

α
(∂xe

k
2 (x , t))2dx

+
1

4p
(∂xe

k
1 (α, t)−pek1 (α, t))2+

1

4p
(∂xe

k
2 (α, t)+pek2 (α, t))2

=
1

4p
(∂xe

k−1
2 (α, t)+pek−1

2 (α, t))2+
1

4p
(∂xe

k−1
1 (α, t)−pek−1

1 (α, t))2
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Proof continued

Now sum over the iteration index and get a telescopic sum,
all interface terms cancel, except for the first and last one,
and we get

K∑
k=1

(
1

2
∂t

∫ α

0
(ek1 (x , t))2dx +

1

2
∂t

∫ L

α
(ek2 (x , t))2dx

)

+
K∑

k=1

(∫ α

0
(∂xe

k
1 (x , t))2dx

∫ L

α
(∂xe

k
2 (x , t))2dx

)
+

1

4p
(∂xe

K
1 (α, t)−peK1 (α, t))2+

1

4p
(∂xe

K
2 (α, t)+peK2 (α, t))2

=
1

4p
(∂xe

0
2 (α, t) + pe0

2 (α, t))2 +
1

4p
(∂xe

0
1 (α, t)− pe0

1 (α, t))2.

Integrating now in time using the fact that the errors at time
t = 0 vanish, and neglecting the positive term at iteration
index K on the left of the equal sign, we get the inequality
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Proof continued

K∑
k=1

1

2

(∫ α

0
(ek1 (x , t))2dx +

∫ L

α
(ek2 (x , t))2dx

)

+
K∑

k=1

∫ t

0

(∫ α

0
(∂xe

k
1 (x , τ))2dx +

∫ L

α
(∂xe

k
2 (x , τ))2dx

)
dτ

≤ 1

4p

∫ t

0

(
(∂xe

0
2 (α, τ)+pe0

2 (α, τ))2+(∂xe
0
1 (α, τ)−pe0

1 (α, τ))2
)
dτ

This inequality holds for all K , and since the right hand side
is just a number independent of K , we can let K go to
infinity, which shows that both terms in the sums on the left
need to go to zero for the sums to remain bounded, since
they are non-negative.

The result in the theorem then follows from the first of these
sums.
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Optimized Schwarz WR for the Wave Equation

∂ttu
k+1
1 (x , t)=c2∂xxu

k+1
1 (x , t) + f (x , t) in Ω1 × (0,T ],

uk+1
1 (x , 0)=u0(x) in Ω1,

∂tu
k+1
1 (x , 0)=ũ0(x) in Ω1,

uk+1
1 (0, t)=g0(t) in (0,T ],

(∂x + p)uk+1
1 (β, t)=(∂x + p)uk2 (β, t) in (0,T ],

∂ttu
k+1
2 (x , t)=c2∂xxu

k+1
2 (x , t) + f (x , t), in Ω2 × (0,T ],

uk+1
2 (x , 0)=u0(x) in Ω2,

∂tu
k+1
2 (x , 0)=ũ0(x) in Ω2,

uk+1
2 (L, t)=gL(t) in (0,T ],

(∂x − p)uk+1
2 (α, t)=(∂x − p)uk1 (α, t) in (0,T ].

Like for the heat equation, we consider the equations for the
errors ekj := u − ukj , j = 1, 2, which after a Laplace
transform in time with with Laplace parameter s are
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Error Equations in Laplace Space

s2êk+1
1 (x , s) = c2∂xx ê

k+1
1 (x , s), in (−∞, β),

(∂x + p)êk+1
1 (β, s) = (∂x + p)êk2 (β, s),

s2êk+1
2 (x , s) = c2∂xx ê

k+1
2 (x , s), in (α,∞),

(∂x − p)êk+1
2 (α, s) = (∂x − p)êk1 (α, s).

Bounded solutions for s := η+ iω with η ≥ 0 are of the form

êk+1
1 (x , s) = C k+1

1 (s)e
s
c

(x−β), êk+1
2 (x , s) = C k+1

2 (s)e−
s
c

(x−α).

To determine the constants C k+1
j , j = 1, 2, use the

transmission conditions, at x = β and x = α

(∂x + p)êk+1
1 (β, s) = C k+1

1 (s)(
s

c
+ p)

= (∂x + p)êk2 (β, s) = C k
2 (s)(− s

c
+ p)e−

s
c

(β−α),

(∂x − p)êk+1
2 (α, s) = C k+1

2 (s)(− s

c
− p)

= (∂x − p)êk1 (α, s) = C k
1 (s)(

s

c
− p)e

s
c

(α−β).
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Solving for the constant C k
2 (s) at iteration k , we obtain

C k
2 (s) =

s
c − p

− s
c − p

e−
s
c

(β−α)C k−1
1 (s).

Inserting this into the other relation yields

C k+1
1 (s) =

( s
c − p
s
c + p

)2

e−2 s
c

(β−α)C k−1
1 (s),

and similarly also for the second constant,

C k+1
2 (s) =

( s
c − p
s
c + p

)2

e−2 s
c

(β−α)C k−1
2 (s).

The convergence factor of the optimized Schwarz waveform
relaxation algorithm for the wave equation is therefore

ρR(s, p) =

( s
c − p
s
c + p

)2

e−2 s
c

(β−α),

very similar to the heat equation, only
√
s is replaced by

s/c , and we obtain by induction for j = 1, 2

C 2k
j (s) = (ρR(s, p))k C 0

j (s).
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Local Optimal Schwarz Method

This implies for the Laplace transformed error functions

ê2k
1 (x , s) = (ρR(s, p))k ê0

1 (x , s),

ê2k
2 (x , s) = (ρR(s, p))k ê0

2 (x , s).

We could choose p := s
c for an optimal Schwarz waveform

relaxation algorithm with a vanishing convergence factor,
since ∂x ± 1

c ∂t is local.

Many more Results:

I Wave equation in higher dimensions (G et al 2003,
2004)

I Advection reaction diffusion (G et al 2007, 2009)

I Laplace type problems (G 2006)

I Maxwell, Shallow Water, Circuits, . . .

I Dirichlet-Neumann and Neumann-Neumann WR
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Numerical Example, first iteration
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Numerical Example, first iteration
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Parareal Schwarz Waveform Relaxation

Use a general space-time decomposition:

0

T

Ωij

x

t

Ω

See Maday et al (2005) and G et al (2012, 2019)
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