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Origins of Shooting Methods

Herbert B. Keller (1968): Numerical Methods For
Two-Point Boundary-Value Problems, 1968

“Initial value methods are seldom advocated in the literature, but
we find them extremely practical and theoretically powerful. A
modification, called parallel shooting, is introduced to treat those
’unstable’ cases (with rapidly growing solutions) for which ordinary
shooting may be inadequate.”

Alfredo Bellen and Marino Zennaro (1989): Parallel
Algorithms for Initial-Value Problems for Difference and
Differential Equations

“In addition to the two types of parallelism mentioned above, we
wish to isolate a third which is analogous to what Gear has more
recently called parallelism across the time. Here it is more
appropriately called parallelism across the steps. In fact, the
algorithm we propose is a realization of this kind of parallelism.
Without discussing it in detail here, we want to point out that the
idea is indeed that of multiple shooting and parallelism is
introduced at the cost of redundancy of computation.”
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Decomposition for Shooting Methods in Time

The space-time domain is decomposed in the time direction:

T0 := 0

TN := T

T1

T2

T3

x

t

Ω

An iteration is then defined, which only uses solutions in the
time subdomains, to obtain an approximate solution over the
entire time interval (0,T ).
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First Variant of such a Method
Jörg Nievergelt, (1964): Parallel methods for integrating
ordinary differential equations
“For the last 20 years, one has tried to speed up numerical

computation mainly by providing ever faster computers. Today, as

it appears that one is getting closer to the maximal speed of

electronic components, emphasis is put on allowing operations to

be performed in parallel. In the near future, much of numerical

analysis will have to be recast in a more ’parallel’ form.”
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Nievergelts Method

∂tu(t) = f (t, u(t)) t ∈ (0,T ],
u(0) = u0.

Partition (0,T ] into subintervals (Tn−1,Tn],
0 = T0 < T1 < T2 < . . . < TN = T , and then compute

1. A rough approximation U0
n (red) using e.g. FE

t

u

u0

TT1 T2 T30

U0
0

U0
1

U0
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3

U0
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Nievergelts Method
2. For Mn points un,j (blue) close to U0

n , compute accurate
trajectories un,m(t) in parallel

t

u

u0

TT1 T2 T3

M1 = 3 M2 = 4 M3 = 3

0

u1,1

u1,2

u1,3

u2,1

u2,2

u2,3

u2,4

u3,1

u3,2

u3,3

U0
0

U0
1

U0
2 U0

3
U0

4

3. Set U1
1 := u0,1(T1) and interpolate sequentially by

I finding the index m such that U1
n ∈ [un,m, un,m+1],

I determining p such that U1
n = pun,m + (1− p)un,m+1,

I setting the next interpolated value at Tn+1 to
U1
n+1 := pun,m(Tn+1) + (1− p)un,m+1(Tn+1).
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Result for Linear Problems

Theorem (Nievergelt’s Method for Linear Problems)

For scalar linear ordinary differential equations,

∂tu(t) = au(t) + f (t) t ∈ (0,T ],
u(0) = u0

the method of Nievergelt computes the exact solution,
U1
n = u(Tn) for n = 1, 2, . . . ,N, and it suffices to choose

Mn = 2, i.e. only to compute two trajectories on each time
interval to interpolate from.
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Proof.
It suffices to prove that if un,1(t) and un,2(t) are two
solutions on (Tn,Tn+1) with initial conditions un,1(Tn) = α
and un,2(Tn) = β, then a third solution v(t) with initial
condition v(Tn) = pα + (1− p)β for any p ∈ R is the
solution computed by Nievergelts method,

v(Tn+1) = pun,1(Tn+1) + (1− p)un,2(Tn+1). (∗)

By linearity, the linear combination pun,1(t) + (1− p)un,2(t)
is also solution with initial condition

pun,1(Tn) + (1− p)un,2(Tn) = pα + (1− p)β = v(Tn),

and hence by uniqueness we must have

v(t) = pun,1(t) + (1− p)un,2(t),

which implies (*).
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Further Properties

I In the non-linear case, there is additional error

I The method is inefficient compared to any serial method:
“... parallelism is introduced at the expense of re-
dundancy of computation ... it is believed that more
general and improved versions of these methods will
be of great importance when computers capable
of executing many computations in parallel become
available.”

I difficult to generalize to systems of ordinary differential
equations: one would need many points in a cloud to be
sure to cover the accurate trajectory

I The method of Nievergelt is in fact a direct method,
but a natural precursor of multiple shooting in time.
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Multiple Shooting in the Time Direction
Philippe Chartier and Bernard Philippe (1993): A
Parallel Shooting Technique for Solving Dissipative ODEs

“We study different modifications of a class of paral-
lel algorithms, initially designed by A. Bellen and M.
Zennaro for difference equations and called ’across
the steps’ methods by their authors, for the purpose
of solving initial value problems in ordinary differen-
tial equations on a massively parallel computer”

The idea is to adapt a shooting method, developed for the
solution of boundary value problems, to systems of initial
value problems

∂tu(t) = f (t,u(t)) t ∈ (0,T ],
u(0) = u0,

but there is no target to hit in the case of initial value
problems.
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Idea to use shooting in time
Introduce intermediate targets: as for Nievergelt, split the
time interval (0,T ] into subintervals (Tn−1,Tn],
n = 1, . . . ,N, with 0 = T0 < T1 < T2 < . . . < TN = T , and
solve the original problem on the subintervals,

∂tun(t) = f (t,un(t)) t ∈ (Tn,Tn+1],
un(Tn) = Un.

This is however only possible if we know the starting point
Un of the solution for each interval, Un = u(Tn). These
values are called shooting parameters, and they must satisfy
the system of equations

U0 = u0(0) = u0,
U1 = u0(T1) = u0(T1,U0),
U2 = u1(T2) = u1(T2,U1),

...
...

UN = uN−1(TN) = uN−1(TN ,UN−1).
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The multiple shooting equations

Collecting the the shooting parameters Un in the vector of
vectors U := (U0,U1, . . . ,UN)T , one can determine their
values by solving the non-linear system of equations

F (U) :=


U0 − u0

U1 − u0(T1,U0)
U2 − u1(T2,U1)

...
UN − uN−1(TN ,UN−1)

 = 0.

If we apply Newton’s method to this system, like in the
classical shooting method, to determine the shooting
parameters, we start with an initial guess U0 and then
compute for k = 0, 1, 2, . . .

Uk+1 = Uk −
[
F ′(Uk)

]−1
F (Uk)
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Rewriting the Newton Iteration
The Jacobian is given by (I denotes the identity)

F ′(Uk) =


I

− ∂u0

∂U 0
(T1,Uk

0) I

− ∂u1

∂U 1
(T2,Uk

1) I

. . .
. . .


Multiplying the Newton iteration by the Jacobian matrix on

both sides, we find the recurrence relation

Uk+1
0 = u0,

Uk+1
1 = u0(T1,Uk

0) +
∂u0

∂U0
(T1,Uk

0)(Uk+1
0 −Uk

0),

Uk+1
2 = u1(T2,Uk

1) +
∂u1

∂U1
(T2,Uk

1)(Uk+1
1 −Uk

1), . . .

or in more compact form for n = 0, 1, 2, . . .N − 1

Uk+1
0 = u0,

Uk+1
n+1 = un(Tn+1,Uk

n) + ∂un

∂Un
(Tn+1,Uk

n)(Uk+1
n −Uk

n)
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Computing the Jacobian Terms

As for classical shooting methods taking a derivative with
respect to Un of the system of ODEs to be solved on each
time interval

∂tun(t) = f (t,un(t)) t ∈ (Tn,Tn+1],
un(Tn) = Un,

and denoting the derivative of the trajectory by
Vn(t) := ∂un

∂Un
(t,Un), we obtain for Vn(t) the linear system

of ODEs

∂tVn(t) =
∂f

∂un
(t,un(t,Un))Vn(t) t ∈ (Tn,Tn+1],

Vn(Tn) = I ,

where I is the identity matrix.
One thus just has to compute solutions of these two coupled
systems to use Newton’s method.
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Convergence Results

Theorem (Quadratic Convergence)

If the function f (t,u(t)) in the system of ODEs is twice
continuously differentiable in its second argument, then the
multiple shooting method converges locally quadratically, i.e.

||U−Uk+1||≤ 1

2
||[F ′(Uk)]−1||||F ′′(Uk)|| ||U−Uk ||2+O(||U−Uk ||3)

where F ′(U) denotes the Jacobian of F (U) and F ′′(U) the
bilinear map representing the second derivative of F (U).

Proof. We expand F (U) around the iteration Uk ,

F (U) = F (Uk) + F ′(Uk)(U −Uk)

+
1

2
F ′′(Uk)(U −Uk ,U −Uk) + O(||U −Uk ||3)

From Newton’s method, we have

0 = F (Uk) + F ′(Uk)(Uk+1 −Uk)
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Proof continued

If U is the solution, we have F (U) = 0, and the difference
gives

0 = F ′(Uk)(U −Uk)− F ′(Uk)(Uk+1 −Uk)

+
1

2
F ′′(Uk)(U −Uk ,U −Uk)

+O(||U −Uk ||3)

= F ′(Uk)(U −Uk+1) +
1

2
F ′′(Uk)(U −Uk ,U −Uk)

+O(||U −Uk ||3).

Solving for (U −Uk+1) and taking norms then leads to the
quadratic convergence estimate.
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A new result in time

Theorem (Finite Step Convergence)

If U0
0 = u0, then the multiple shooting method has the

property that
Uk

n = u(Tn) if k ≥ n,

i.e. Uk
n coincides with the exact solution from iteration index

k = n onward.

Proof. The proof is by induction in the time direction: for
n = 0, we have by assumption U0

0 = u0, and Uk+1
0 = u0 for

k = 0, 1, 2, . . . by the multiple shooting method, so the
initial value is always exact. So suppose that Uk

n = u(Tn)
for k ≥ n.

For n + 1, we have from the multiple shooting method that

Uk+1
n+1 = un(Tn+1,Uk

n) +
∂un

∂Un
(Tn+1,Uk

n)(Uk+1
n −Uk

n).
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Proof continued
Now to show that Uk+1

n+1 = u(Tn+1) for k + 1 ≥ n + 1, we
note that

k + 1 ≥ n + 1 =⇒ k ≥ n,

and hence we have already by the induction hypothesis that

Uk
n = u(Tn), and also Uk+1

n = u(Tn),

and introducing this into

Uk+1
n+1 = un(Tn+1,Uk

n) +
∂un

∂Un
(Tn+1,Uk

n)(Uk+1
n −Uk

n),

the second term cancels because of the difference, and we
obtain

Uk+1
n+1 = un(tn+1,u(Tn)) = u(Tn+1),

which concludes the proof.

But the computation of the Jacobian terms becomes
prohibitive for large systems!
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Origins of the parareal algorithm

Prasenjit Saha, Joachim Stadel and Scott Tremaine
(1997): A parallel integration method for solar system
dynamics

“We describe how long-term solar system orbit in-
tegration could be implemented on a parallel com-
puter. The interesting feature of our algorithm is
that each processor is assigned not to a planet or a
pair of planets but to a time-interval. Thus, the 1st
week, 2nd week, . . . , 1000th week of an orbit are
computed concurrently. The problem of matching
the input to the (n + 1)-st processor with the out-
put of the n-th processor can be solved efficiently by
an iterative procedure. Our work is related to the
so-called waveform relaxation methods . . . ”

They cite Bellen and Zennaro and Nievergelt as sources of
inspiration, and waveform relaxation!
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The parareal algorithm
Jacques-Louis Lions, Yvon Maday and Gabriel Turinici
(2001): Résolution d’EDP par un schéma en temps
“pararéel”
“On propose dans cette Note un schéma permettant de
profiter d’une architecture parallèle pour la discrétisation en
temps d’une équation d’évolution aux dérivées partielles.
Cette méthode, basée sur un schéma d’Euler, combine des
résolutions grossières et des résolutions fines et
indépendantes en temps en s’inspirant de ce qui est classique
en espace. La parallélisation qui en résulte se fait dans la
direction temporelle ce qui est en revanche non classique.
Elle a pour principale motivation les problèmes en temps
réel, d’où la terminologie proposée de ’pararéel”

Working with Stefan Vandewalle, November 7, 2002.
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Historical notes

I Saha, Stadel and Tremaine introduce a key new feature
in the multiple shooting algorithm, namely to
approximate the Jacobian terms by certain differences,
computed for a simpler model of the planetary system,
including only the interaction with the sun

I Lions, Maday and Turinici, independently of previous
work, except for the work of Chartier and Philippe,
discovered the same algorithm, coming however from a
virtual control approach.

I They explain their algorithm on the Dahlquist equation
(“Pour commencer, on expose l’idée sur l’exemple
simple”) using Backward Euler.

I They then generalize their results to the heat equation,
and to a semi-linear advection diffusion problem, where
a variant of the algorithm is proposed by linearization
about the previous iterate
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The Parareal Algorithm
For solving the non-linear problem

∂tu(t) = f (t,u(t)) t ∈ (0,T ],
u(0) = u0.

parareal needs two propagation operators:

1. G (t2, t1,u1) is a coarse approximation1 to the solution
u(t2) with initial condition u(t1) = u1,

2. F (t2, t1,u1) is a more accurate approximation2 of the
solution u(t2) with initial condition u(t1) = u1.

As for Nievergelt, (0,T ] is partitioned into subintervals
(Tn−1,Tn]. Parareal then starts with an initial coarse
approximation U0

n at T0,T1, . . . ,TN , and then computes for
k = 0, 1, . . .

Uk+1
0 :=u0,

Uk+1
n+1:=F (Tn+1,Tn,Uk

n)+G (Tn+1,Tn,Uk+1
n )−G (Tn+1,Tn,Uk

n)

1G stands for ’grossier’, which means coarse in French.
2F stands for ’fine’
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Illustration of Parareal

Uk+1
0 :=u0,

Uk+1
n+1:=F (Tn+1,Tn,Uk

n)+G (Tn+1,Tn,Uk+1
n )−G (Tn+1,Tn,Uk

n)

t

u

u0

TT1 T2 T30

U0
0

U0
1

U0
2 U0

3
U0

4U1
0

U1
1

U1
2

U1
3 U1

4

F
F F

F

G
G G

G

Initial guess of parareal computed with the coarse propagator
G in red, and first parallel fine solutions computed with the
fine propagator F in blue.
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Finite Step Convergence of Parareal

Theorem (Finite Step Convergence)

Like for multiple shooting, the parareal algorithm has the
property that

Uk
n = F (Tn, 0,u0) if k ≥ n,

i.e. Uk
n coincides with the fine approximation from iteration

index k = n onward.

Proof. by induction in the time direction: for n = 0, we have
by

Uk+1
0 := u0

that the initial value is always the same as the one used for
the fine solution. So suppose that Uk

n = F (Tn, 0,u0) for
k ≥ n. For n + 1, we have from the parareal algorithm that

Uk+1
n+1 = F (Tn+1,Tn,Uk

n)+G (Tn+1,Tn,Uk+1
n )−G (Tn+1,Tn,Uk

n).
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Proof continued
Now to show that

Uk+1
n+1 = F (Tn+1, 0,u0)

for k + 1 ≥ n + 1, since

k + 1 ≥ n + 1 =⇒ k ≥ n,

we have by the induction hypothesis that

Uk+1
n = Uk

n = F (Tn, 0,u0),

and introducing this into the parareal formula, the second
and third term cancel, and we obtain

Uk+1
n+1 = F (Tn+1,Tn,F (Tn, 0,u0)) = F (Tn+1, 0,u0),

which concludes the proof.

Note that convergence after N iterations is too late to make
the algorithm useful, no speedup is possible then!
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Parareal Relation to Multiple Shooting
Theorem (Parareal is an Approximate Multiple Shooting
Method)

The parareal algorithm with an exact fine solver is a multiple
shooting method with an approximation of the derivative
terms stemming from the Jacobian in Newton’s method by a
difference of trajectories computed on a coarser grid.

Proof. Recall the multiple shooting method

Uk+1
n+1 = un(Tn+1,Uk

n) +
∂un

∂Un
(Tn+1,Uk

n)(Uk+1
n −Uk

n).

A Taylor series of un(Tn+1,Uk+1
n ) about Uk

n ,

un(Tn+1,Uk+1
n )=un(Tn+1,Uk

n) +
∂un

∂Un
(Tn+1,Uk

n)(Uk+1
n −Uk

n)

+O(||Uk+1
n −Uk

n ||2),

implies that

∂un

∂Un
(Tn+1,Uk

n)(Uk+1
n −Uk

n) ≈ un(Tn+1,Uk+1
n )−un(Tn+1,Uk

n)
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Approximate Shooting Method

Approximating the Jacobian term by the difference gives

Ũ
k+1
n+1 = un(Tn+1, Ũ

k
n) + un(Tn+1, Ũ

k+1
n )− un(Tn+1, Ũ

k
n).

This method is not of much interest, since the first and last
term on the right hand side cancel, and one thus sequentially
integrates the problem using the middle term.

The parareal algorithm remedies this by replacing the last
two terms on the right hand side using a coarse
approximation,

Uk+1
n+1 := F (Tn+1,Tn,Uk

n)+G (Tn+1,Tn,Uk+1
n )−G (Tn+1,Tn,Uk

n)

Parareal is thus a multiple shooting method with an
approximation of the Jacobian by a difference computed on
a coarser mesh (or model).
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Superlinear Convergence Estimate for Parareal

Theorem (Parareal Convergence Estimate)

Let F denote the exact solution and let G be an
approximate solution of order p with local truncation error
bounded by C3∆T p+1. If

‖G (t+∆T , t, v)−G (t+∆T , t,w)‖ ≤ (1+C2∆T )‖v−w‖,

F (Tn,Tn−1,x)−G (Tn,Tn−1,x)=cp+1(x)∆T p+1+cp+2(x)∆T p+2+. . .

where the cj , j = p + 1, p + 2, . . . are continuously
differentiable, then the parareal algorithm satisfies

‖u(Tn)−Uk
n‖ ≤

C3

C1

(C1∆T p+1)k+1

(k + 1)!
(1+C2∆T )n−k−1

k∏
`=0

(n − `)

≤ C3

C1

(C1Tn)k+1

(k + 1)!
eC2(Tn−Tk+1)∆T p(k+1),

where C1 is related to the cj , see the proof.
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Proof.
Since F represents the exact solution, we have the identity

u(Tn+1) = F (Tn+1,Tn,u(Tn)),

and subtracting from this the parareal algorithm

Uk+1
n+1 := F (Tn+1,Tn,Uk

n)+G (Tn+1,Tn,Uk+1
n )−G (Tn+1,Tn,Uk

n)

we obtain when adding and subtracting G (Tn+1,Tn,u(Tn))

u(Tn+1)−Uk+1
n+1 = F (Tn+1,Tn,u(Tn))− G (Tn+1,Tn,u(Tn))

−
(
F (Tn+1,Tn,Uk

n)− G (Tn+1,Tn,Uk
n)
)

+ G (Tn+1,Tn,u(Tn))− G (Tn+1,Tn,Uk+1
n ).

Using the expansion for the first two lines, we obtain

u(Tn+1)−Uk+1
n+1 = cp+1(u(Tn))∆T p+1+cp+2(u(Tn))∆T p+2+. . .

−
(
cp+1(Uk

n)∆T p+1 + cp+2(Uk
n)∆T p+2 + . . .

)
+ G (Tn+1,Tn,u(Tn))− G (Tn+1,Tn,Uk+1

n ).



PinT Summer
School

Martin J. Gander

Introduction

Origins

Time Decomposition

Nievergelt

Motivation

Method

Properties

Shooting in Time

Multiple Shooting

Convergence Results

Parareal

Origins

The Algorithm

Finite Step Convergence

Parareal=Shooting

Superlinear Convergence

Lorenz Equations

Dahlquists Equation

Heat Equation

Transport Equation

Proof continued
Since the cj , j = p + 1, p + 2, . . . are continuously
differentiable, there exists a constant C1 such that

||(cp+1(u(Tn))− cp+1(Uk
n))∆T p+1

+ (cp+2(u(Tn))− cp+2(Uk
n))∆T p+2 + . . . ||

≤||(cp+1(u(Tn))− cp+1(Uk
n))||∆T p+1

+ ||(cp+2(u(Tn))− cp+2(Uk
n))||∆T p+2 + . . .

≤C1∆T p+1||u(Tn)−Uk
n ||.

We can thus take norms in the equation on the previous
slide, and using the first (Lipschitz) condition on G yields

‖u(Tn+1)−Uk+1
n+1‖≤C1∆T p+1‖u(Tn)−Uk

n‖+(1+C2∆T )‖u(Tn)−Uk+1
n ‖

To bound ‖u(Tn+1)−Uk+1
n+1‖, we study

ek+1
n+1 = αekn + βek+1

n , e0
n+1 = γ + βe0

n ,

where we set α := C1∆T p+1, β := 1 + C2∆T and
γ := C3∆T p+1.
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Proof continued
The initialization is obtained from the initial guess for
Parareal obtained by G using the Lipschitz condition,

||u(Tn+1)−U0
n+1|| = ||u(Tn+1)− G (Tn+1,Tn,U0

n)||
= ||u(Tn+1)− G (Tn+1,Tn,u(Tn))

+G (Tn+1,Tn,u(Tn))− G (Tn+1,Tn,U0
n)||

≤ C3∆T p+1 + (1 + C2∆T )||u(Tn)−U0
n||.

Generating functions: multiplying the recurrence by ζn+1

and summing over n, we find for the first recurrence on the
left

∞∑
n=0

ek+1
n+1 ζ

n+1 = α

∞∑
n=0

ekn ζ
n+1 + β

∞∑
n=0

ek+1
n ζn+1

= αζ
∞∑
n=0

ekn ζ
n + βζ

∞∑
n=0

ek+1
n ζn.

Now since ek0 = ||u(0)−Uk
0 || = 0, we can start summing at

n = 1 on the right, to get the same sum as on the left.
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Proof continued
The generating function ρk(ζ) :=

∑∞
n=1 e

k
n ζ

n thus satisfies
the recurrence relation

ρk+1(ζ) = αζρk(ζ) + βζρk+1(ζ).

This recurrence relation in k can now easily be solved,

ρk+1(ζ) =
αζ

1− βζ
ρk(ζ) =

αk+1ζk+1

(1− βζ)k+1
ρ0(ζ).

To find ρ0(ζ), we multiply also the initialization by ζn+1 and
sum in n,

∞∑
n=0

e0
n+1ζ

n+1 = γζ

∞∑
n=0

ζn + βζ

∞∑
n=0

e0
nζ

n.

Summing the geometric series represented by the first sum
on the right, we thus find

ρ0(ζ) = γ
ζ

1− ζ
+ βζρ0(ζ) =⇒ ρ0(ζ) =

γζ

(1− ζ)(1− βζ)
.
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Proof continued
Inserting this result into the formula for ρk(ζ) gives

ρk(ζ) = γαk ζk+1

(1− ζ)(1− βζ)k+1
,

and the power series coefficients of this function bound the
error of the parareal algorithm. To simplify we replace 1− ζ
in the denominator by 1− βζ, which only increases the
coefficients in the power series, because β ≥ 1 and

1

1− ζ
= 1+ζ+ζ2+. . . and

1

1− βζ
= 1+βζ+β2ζ2+. . . ,

and we thus consider the modified generating function

ρ̃k(ζ) = γαk ζk+1

(1− βζ)k+2
,

We now use the general binomial series formula

1

(1− z)b+1
=
∞∑
j=0

(
b + j

j

)
z j ,
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Proof continued
which gives in our case

1

(1− βζ)k+2
=
∞∑
j=0

(
k + 1 + j

j

)
βjζ j .

Therefore, the power series expansion of the modified
generating function is

ρ̃k(ζ) = γαk
∞∑
j=0

(
k + 1 + j

j

)
βjζk+1+j

= γαk
∞∑

n=k+1

(
n

n − k − 1

)
βn−k−1ζn.

The expansion coefficients for n ≤ k are zero, as we have
seen in the finite step convergence result! Now using that(

n

n − k − 1

)
=

(
n

k + 1

)
=

1

(k + 1)!

k∏
`

(n − `),
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Proof continued

we obtain

ρ̃k(ζ) =
γαk

(k + 1)!

∞∑
n=k+1

k∏
`

(n − `)βn−k−1ζn.

The n-th coefficient ekn thus satisfies for n > k the bound

ekn ≤
γαk

(k + 1)!
βn−k−1

k∏
`

(n − `),

and we see that this bound also contains the zero bound for
n ≤ k because of the product term which vanishes for k > n.

Since the error of parareal is bounded by ekn , we finally
obtain using the values of α, β and γ that
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Proof continued

||u(Tn)−Uk
n || ≤

γαk

(k + 1)!
βn−k−1

k∏
`

(n − `)

=
C3∆T p+1C k

1 ∆T (p+1)k

(k + 1)!
(1+C2∆T )n−k−1

k∏
`=0

(n−`)

=
C3

C1

(C1∆T p+1)k+1

(k + 1)!
(1 + C2∆T )n−k−1

k∏
`=0

(n − `),

the first result. For the second, Taylor expand the
exponential function

(1 + C2∆T )n−k−1 ≤ eC2∆T (n−k−1) = eC2(Tn−Tk+1),

and over-estimate the product term,

(C1∆T p+1)k+1
k∏
`=0

(n − `)≤∆T p(k+1)(C1∆T )k+1nk+1

= ∆T p(k+1)(C1Tn)k+1.
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function U=Parareal(F,G,T,u0,N,K);

% PARAREAL implementation of the parareal algorithm

% U=Parareal(F,G,T,u0,N,K); applies the parareal algorithm with fine

% solver F(t0,t1,ut0) and coarse solver G(t0,t1,ut0) on [0,T] with

% initial condition u0 at t=0 using N equidistant coarse time points

% doing K iterations. The output U{k} contains the parareal

% approximations at the coarse time points for each iteration k.

dT=T/N; TT=0:dT:T; % coarse time mesh

U{1}(1,:)=u0;

for n=1:N % initial guess with G

Go(n+1,:)=G(TT(n),TT(n+1),U{1}(n,:));

U{1}(n+1,:)=Go(n+1,:); % keep Go for parareal

end;

for k=1:K % parareal iteration

for n=1:N

Fn(n+1,:)=F(TT(n),TT(n+1),U{k}(n,:)); % parallel with F

end;

U{k+1}(1,:)=u0;

for n=1:N

Gn(n+1,:)=G(TT(n),TT(n+1),U{k+1}(n,:)); % sequential with G

U{k+1}(n+1,:)=Fn(n+1,:)+Gn(n+1,:)-Go(n+1,:); % parareal update

end;

Go=Gn; % keep for next iteration

end;
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Parareal for the Lorenz equations: k=1
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Parareal for the Lorenz equations: k=2
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Parareal for the Lorenz equations: k=3
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Parareal for the Lorenz equations: k=4
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Parareal for the Lorenz equations: k=5

0

20

40

60

40

z

20

y
0 20-20

x
0-20



PinT Summer
School

Martin J. Gander

Introduction

Origins

Time Decomposition

Nievergelt

Motivation

Method

Properties

Shooting in Time

Multiple Shooting

Convergence Results

Parareal

Origins

The Algorithm

Finite Step Convergence

Parareal=Shooting

Superlinear Convergence

Lorenz Equations

Dahlquists Equation

Heat Equation

Transport Equation

Parareal for the Lorenz equations: k=6
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Parareal for the Lorenz equations: k=7
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Parareal for the Lorenz equations: k=8
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Parareal for the Lorenz equations: k=9
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Do we achieve any speedup?
I We used N = 500 coarse time intervals
I We could have used 500 ’processors’
I We needed eight iterations
I We could have computed the equivalent of eight fine

approximations sequentially (neglecting the coarse
propagator and communication)

I This would correspond to a speedup of 500/8 ≈ 60.
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Performance for Dahlquist’s equation

∂tu = λu, u(0) = u0, λ ∈ C.
In that case, one can obtain two different convergence
estimates, depending on if solutions are growing or not.

Theorem (Superlinear convergence)

For Dahlquist’s equation with exact fine solver
F (Tn+1,Tn, v) = veλ∆T and coarse solver
G (Tn+1,Tn, v) = vRG (λ∆T ) where RG is the stability
function of G, and arbitrary initialization U0

n satisfying
U0

0 = u0, we have the estimate

max
1≤n≤N

|u(Tn)− Uk
n | ≤

|eλ∆T − RG (λ∆T )|k

k!
Rn−k−1

0

×
k∏
`=1

(N − `) max
1≤n≤N

|u(Tn)− U0
n |,

with R0 := |RG (λ∆T )| if |RG (λ∆T )| > 1, and else R0 = 1.



PinT Summer
School

Martin J. Gander

Introduction

Origins

Time Decomposition

Nievergelt

Motivation

Method

Properties

Shooting in Time

Multiple Shooting

Convergence Results

Parareal

Origins

The Algorithm

Finite Step Convergence

Parareal=Shooting

Superlinear Convergence

Lorenz Equations

Dahlquists Equation

Heat Equation

Transport Equation

Linear convergence for decaying solutions

Theorem (Linear convergence)

If <(λ) ≤ 0, and ∆T is such that G is in its region of
absolute stability, |RG (λ∆T )| < 1, then the parareal
algorithm applied to the Dahlquist test equation satisfies for
all time the estimate

sup
n>0
|u(Tn)−Uk

n | ≤
(
|eλ∆T − RG (λ∆T )|

1− |RG (λ∆T |

)k

sup
n>0
|u(Tn)−U0

n |.

Proof. As in the earlier proof we arrive at∣∣∣u(Tn+1)− Uk+1
n+1

∣∣∣ ≤ ∣∣∣eλ∆T − RG (λ∆T )
∣∣∣ ∣∣∣u(Tn)− Uk

n

∣∣∣
+|RG (λ∆T )|

∣∣∣u(Tn)− Uk+1
n

∣∣∣
≤

∣∣∣eλ∆T − RG (λ∆T )
∣∣∣ sup
n>0

∣∣∣u(Tn)− Uk
n

∣∣∣
+|RG (λ∆T )| sup

n>0

∣∣∣u(Tn)− Uk+1
n

∣∣∣
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Proof continued

Note that we used that solutions remain bounded to take
the sup on the right.

We can thus also take the sup on the left, and using that

Uk+1
0 = u(T0) := u0

by the definition of the parareal algorithm, we can include
the index zero on the left as well. We thus obtain

(1− |RG (λ∆T )|) supn>0

∣∣u(Tn)− Uk+1
n

∣∣
≤
∣∣eλ∆T − RG (λ∆T )

∣∣ supn>0

∣∣u(Tn)− Uk
n

∣∣ ,
which implies the result by induction.
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Numerical Experiment for Dahlquist’s equation
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Errors and bounds with λ = −1 for T = 0.25, 1, 10, 50.
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Numerical Experiment for Dahlquist’s equation

0 2 4 6 8 10

k

10
-10

10
-5

10
0

10
5

e
rr

o
r

parareal error

superlinear bound

linear bound

0 2 4 6 8 10

k

10
-10

10
-5

10
0

10
5

e
rr

o
r

parareal error

superlinear bound

linear bound

0 2 4 6 8 10

k

10
-10

10
-5

10
0

10
5

e
rr

o
r

parareal error

superlinear bound

linear bound

0 2 4 6 8 10

k

10
-10

10
-5

10
0

10
5

e
rr

o
r

parareal error

superlinear bound

linear bound

Errors and bounds with λ = 2i for T = 1, 5, 10, 20
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Heat Equation

∂tu(x , t) = ∂xxu(x , t) in (0, π)× (0,T ],
u(x , 0) = u0(x) in (0, π),
u(0, t) = 0 in (0,T ],
u(π, t) = 0 in (0,T ].

A Fourier sine series expansion

u(x , t) =
∞∑
ω=1

û(ω, t) sin(ωx)

leads to

∂tu =
∞∑
ω=1

∂t û(ω, t) sin(ωx) = ∂xxu = −
∞∑
ω=1

ω2û(ω, t) sin(ωx).

The Fourier coefficients must thus satisfy the equation

∂t û(ω, t) = −ω2û(ω, t),

a special case of the Dahlquist test equation
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Parareal Convergence for the Heat Equation

Theorem
Let F be exact, G have stability function RG with
supx<0|ex − RG (x)| = ρs finite. Then

max
1≤n≤N

||u(tn)− Uk
n ||2 ≤

ρks
k!

k∏
`=1

(N − `)CN
0 ,

where || · ||2 denotes the spectral norm in space, and

CN
0 :=

√∑∞
ω=1 max1≤n≤N |û(Tn)− Û0

n |2.

If the negative real axis is in the region of absolute stability
of G and limx→−∞ |RG (x)| < 1 (A0-stability), then

sup
n>0
||u(tn)− Uk

n ||2 ≤ ρkl C∞0 ,

with constant ρl depending only on G.
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Proof.
The numerator in the superlinear bound becomes

|e−ω2∆T − RG (−ω2∆T )|k ≤ ρks ,

because G is A0-stable. We can thus square

|u(Tn)− Uk
n | ≤

|eλ∆T − RG (λ∆T )|k

k!
|RG (λ∆T )|n−k−1

k∏
`=1

(n − `) max
1≤n≤N

|u(Tn)− U0
n |,

in the proof of the Dahlquist case and sum over ω,

∞∑
ω=1

|û(Tn)−Ûk
n |2 ≤

(
ρks
k!

k∏
`=1

(n − `)

)2 ∞∑
ω=1

max
1≤n≤N

|û(Tn)−Û0
n |2,

where we used that |RG (−ω2∆T )|n−k−1 ≤ 1. We can now
use Parseval-Plancherel on the left to conclude.
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Proof continued
Similarly we define from the linear bound in the Dahlquist
case

ρl := sup
ω∈R

|e−ω2∆T − RG (−ω2∆T )|
1− |RG (−ω2∆T |

,

and obtain for the Fourier coefficients

sup
n>0
|û(Tn)− Ûk

n |2 ≤ ρ2k
l sup

n>0
|û(Tn)− Û0

n |2.

Summing the squares of the Fourier coefficients gives

sup
n>0

∞∑
ω=1

|û(Tn)− Ûk
n |2 ≤

∞∑
ω=1

sup
n>0
|û(Tn)− Ûk

n |2

≤ ρ2k
l

∞∑
ω=1

sup
n>0
|û(Tn)− Û0

n |2,

and using again Parseval-Plancherel on the left gives the
result.
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Backward Euler Example
If G is Backward Euler, RG (z) = 1

1−z , and we get

ρs = sup
x<0
|ex − 1

1− x
| = sup

x>0
|e−x − 1

1 + x
|

ρl = sup
ω∈R

|e−ω2∆T− 1
1+ω2∆T |

1− | 1
1+ω2∆T |

=sup
x>0

|e−x− 1
1+x |

1− | 1
1+x |

=sup
x>0

|(1 + x)e−x−1|
x

ρs = 0.2036321888 ρl = 0.2984256075
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Numerical Experiment
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Solution of the heat equation, initial coarse approximation
and the first two parareal iterations
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Error in the initial coarse approximation and the first three
parareal iterations when solving the heat equation example
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Intuition why Parareal works so well
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Left: error turned after the first parareal iteration

Right: Decay of the error in the maximum norm in time and
L2 norm in space
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The transport or advection equation

∂tu(x , t) + a∂xu(x , t) = 0 in R× (0,T ],
u(x , 0) = u0(x) in R.

A Fourier transform in space

u(x , t) =
1√
2π

∫ ∞
−∞

e iωx û(ω, t)dω,

û(x , t) =
1√
2π

∫ ∞
−∞

e−iωxu(x , t)dx ,

shows that each Fourier mode û(ω, t) satisfies

∂t û(ω, t) + iωaû(ω, t) = 0, û(ω, 0) = û0(ω),

again a special case of the Dahlquist test equation.
Note that for the hyperbolic transport equation, the
corresponding λ lies indeed on the imaginary axis.
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Convergence estimate

Theorem
Let F be exact and G have stability function RG such that
supx∈R|e ix − RG (ix)| = ρs is bounded. Then

max
1≤n≤N

||u(tn)− Uk
n ||2 ≤

ρks
k!

k∏
`=1

(N − `)CN
0 ,

where || · ||2 denotes the spectral norm in space, and

CN
0 :=

√√√√ ∞∑
ω=1

max
1≤n≤N

|û(Tn)− Û0
n |2.

Proof.
The proof is as in the case of the heat equation.
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Example for Backward Euler
For G Backward Euler, the stability function is
RG (z) = 1

1−z , and thus

ρs = sup
x∈R
|e ix − 1

1− ix
|.

ρs = 1.224353426
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Solution of the transport equation, initial coarse
approximation and the first two parareal iterations
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Plot of the error
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Error in the initial coarse approximation and the first three
parareal iterations for the transport equation example
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Intuition why this does not work well
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Left: error after the first parareal iteration with the view
turned

Right: Decay of the error in the maximum norm of the
parareal iterates when solving the transport equation for
three different transport speeds: a = 0.25, 0.5, 1.
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