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Introduction: Historical Quotes

“The integration methods introduced in this paper are to be
regarded as tentative examples of a much wider class of numerical
procedures in which parallelism is introduced at the expense of
redundancy of computation.”

Jörg Nievergelt 1964

“Parallel algorithms for solving initial value problems for
differential equations have received only marginal attention in the
literature compared to the enormous work devoted to parallel
algorithms for linear algebra. It is indeed generally admitted that
the integration of a system of ordinary differential equations in a
step-by-step process is inherently sequential.”

Philippe Chartier and Bernard Philippe 1993

“La parallélisation qui en résulte se fait dans la direction
temporelle ce qui est en revanche non classique.”

Jacques-Louis Lions, Yvon Maday and Gabriel Turinici 2001
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Causality Principle

The time direction is special for parallelization, because of
the causality principle: the solution later in time is
determined by the solution earlier in time, and never the
other way round.

Example: du
dt = f (u), u(t0) = u0, Euler: du

dt ≈
u(tn+1)−u(tn)

∆t

u1 = u0 + ∆tf (u0)

t

u

u0
u1

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12
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Causality Principle

The time direction is special for parallelization, because of
the causality principle: the solution later in time is
determined by the solution earlier in time, and never the
other way round.

Example: du
dt = f (u), u(t0) = u0, Euler: du

dt ≈
u(tn+1)−u(tn)

∆t

u2 = u1 + ∆tf (u1)

t

u

u0
u1

u2

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12
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Causality Principle

The time direction is special for parallelization, because of
the causality principle: the solution later in time is
determined by the solution earlier in time, and never the
other way round.

Example: du
dt = f (u), u(t0) = u0, Euler: du

dt ≈
u(tn+1)−u(tn)

∆t

u3 = u2 + ∆tf (u2)

t

u

u0
u1

u2
u3

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12
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Causality Principle

The time direction is special for parallelization, because of
the causality principle: the solution later in time is
determined by the solution earlier in time, and never the
other way round.

Example: du
dt = f (u), u(t0) = u0, Euler: du

dt ≈
u(tn+1)−u(tn)

∆t

u4 = u3 + ∆tf (u3)

t

u

u0
u1

u2
u3 u4

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12
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Causality Principle

The time direction is special for parallelization, because of
the causality principle: the solution later in time is
determined by the solution earlier in time, and never the
other way round.

Example: du
dt = f (u), u(t0) = u0, Euler: du

dt ≈
u(tn+1)−u(tn)

∆t

u5 = u4 + ∆tf (u4)

t

u

u0
u1

u2
u3 u4 u5

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12
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Causality Principle

The time direction is special for parallelization, because of
the causality principle: the solution later in time is
determined by the solution earlier in time, and never the
other way round.

Example: du
dt = f (u), u(t0) = u0, Euler: du

dt ≈
u(tn+1)−u(tn)

∆t

u6 = u5 + ∆tf (u5)

t

u

u0
u1

u2
u3 u4 u5 u6

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12
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Causality Principle

The time direction is special for parallelization, because of
the causality principle: the solution later in time is
determined by the solution earlier in time, and never the
other way round.

Example: du
dt = f (u), u(t0) = u0, Euler: du

dt ≈
u(tn+1)−u(tn)

∆t

un+1 = un + ∆tf (un)

t

u

u0
u1

u2
u3 u4 u5 u6 u7 u8 u9 u10 u11 u12

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12
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Time Parallel Methods Over the Course of Time
1960

1970

1980

1990

2000

2010

Saha Stadel Tremaine 1996

Lions Maday Turinici 2001

large scalesmall scale small scale 

Horton Vandewalle 1995

Hackbusch 1984

Lubich Ostermann 1987
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Table of Contents

1. Methods based on multiple shooting:

Tuesday, Chapter 2

2. Methods based on domain decomposition and waveform
relaxation:

Wednesday, Chapter 3

3. Space-time multigrid methods:

Thursday, Chapter 4

4. Direct time parallel methods:

Friday, Chapter 5

Today: Chapter 1: Applications and Model ODEs and PDEs
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Weather Prediction as a Typical Application

Theophrastus, c. 371 - c. 287 BC

“They are less certain when the moon is not full. If
the moon looks fiery, it indicates breezy weather for
that month, if dusky, wet weather; and, whatever
indications the crescent moon gives, are given when
it is three days old.”

Richardson (1922): Weather Prediction by Numerical
Process (100 years!)

“Perhaps some day in the dim future it will be pos-
sible to advance the computations faster than the
weather advances and at a cost less than the saving
to mankind due to the information gained. But that
is a dream.”
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Weather prediction computation by Richardson

“An arrangement
of meteorological
stations designed
to fit with the
chief mechanical
properties of the
atmosphere”

“Pressure to be
observed at the
centre of each
shaded chequer,
velocity at the
centre of each
white chequer.”
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Richardson’s vision (Stephen Conlin, 1986)
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Edward N. Lorenz (1979)
On the prevalence of aperiodicity in simple systems

“As the lone meteorologist at a seminar of mathematicians, I
feel that a few words regarding my presence may be in order.
Let me begin with some remarks about the mathematics of
meteorology.
One of the most familiar problems of interest to
meteorologists is weather forecasting. Mathematically this is
an initial-value problem. The atmosphere and its
surroundings are governed by a set of physical laws which in
principle can be expressed as a system of integro-differential
equations.
At the turn of the century, the forecast problem was
identified by Bjerknes as the problem of solving these
equations, using initial conditions obtained from observations
of current weather. Detailed numerical procedures for solving
these equations were formulated during World War I by
Richardson, but the practical solution of even rather crude
approximations had to await the advent of computers.”
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Weather Prediction Equations
∂tu(x , t) = L(u(x , t)) in Ω× (0,T ],

u(x , 0) = u0(x) in Ω,
B(u(x , t)) = g(x , t) on ∂Ω,

u contains the wind vector, temperature, pressure etc.
If u0 is known over Switzerland, we can predict the weather,
using g from a European weather model.
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Computing Weather Prediction Step by Step

The solution u(x , t + ∆t) depends on the solution u(x , t)
for any ∆t > 0:

0

T

t

t + ∆t

t + 2∆t

x
Ω (Switzerland)

u(x , 0)

u(x , t)

u(x , t + ∆t)

u(x , t + 2∆t)

This is again an entirely sequential process, impossible to use
effectively all processors to compute u(x , t + ∆t) from
u(x , t), there are simply too many processors.
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Evolution of Computing Systems

Top 500 list in November 2017
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Evolution of Computing Systems

Top 500 list in June 2022
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Ordinary Differential Equations
General system of ordinary differential equations (ODEs)

∂tu(t) = f (t,u(t)) t ∈ (0,T ],
u(0) = u0,

Edward N. Lorenz (1979): On the prevalence of
aperiodicity in simple systems

“The first task was to find a suitable system of equa-
tions to solve. In principle any nonlinear system
might do, but a system with some resemblance to
the atmospheric equations offered the possibility of
some useful by-products.”

Lorenz Equations: for parameters σ, r , b ∈ R:

ẋ = −σx + σy x(0) = x0,
ẏ = −xz + rx − y y(0) = y0,
ż = xy − bz z(0) = z0,
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Fixed Points and Trajectories

ẋ = −σx + σy x(0) = x0,
ẏ = −xz + rx − y y(0) = y0,
ż = xy − bz z(0) = z0,

Fixed points: when ẋ = ẏ = ż = 0,

1. x = y = z = 0,

2. x = y = ±
√

b(r − 1), z = r − 1.
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Fixed Points and Trajectories

ẋ = −σx + σy x(0) = x0,
ẏ = −xz + rx − y y(0) = y0,
ż = xy − bz z(0) = z0,

Fixed points: when ẋ = ẏ = ż = 0,

1. x = y = z = 0,

2. x = y = ±
√

b(r − 1), z = r − 1.
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The Butterfly Effect

Edward N. Lorenz (1979): On the prevalence of
aperiodicity in simple systems

“Two states differing by imperceptible amounts may
eventually evolve into two considerably different
states . . . If, then, there is any error whatever in ob-
serving the present state – and in any real system
such errors seem inevitable – an acceptable predic-
tion of an instantaneous state in the distant future
may well be impossible. . . . In view of the inevitable
inaccuracy and incompleteness of weather obser-
vations, precise very-long-range forecasting would
seem to be nonexistent.”

This led to the famous saying that the flapping of the wings
of a butterfly in Europe can change the weather completely
in the US.
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Numerical Approximations

In the general system of ordinary differential equations
(ODEs)

∂tu(t) = f (t,u(t)) t ∈ (0,T ],
u(0) = u0,

one approximates the time derivative by a finite difference,

∂tu ≈
u(t + ∆t)− u(t)

∆t

The two most simple methods are Euler methods:

I Forward Euler: un+1−un

∆t = f (tn,un),

I Backward Euler:: un+1−un

∆t = f (tn+1,un+1).

Forward Euler is much easier to use than Backward Euler!
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A Matlab Implementation

sigma=10;r=28;b=8/3;

f=@(t,x) [sigma*(x(2)-x(1)); r*x(1)-x(2)-x(1)*x(3); x(1)*x(2)-b*x(3)];

T=30;N=30000;dt=T/N;

x=[20;5;-5];

for i=1:N

x(:,i+1)=x(:,i)+dt*f(i*dt,x(:,i)); % Forward Euler step

if mod(i,100)==0 % plot only every 100th

plot3(x(1,:),x(2,:),x(3,:),’-b’); % for animation speed

axis([-20 30 -30 40 -10 60]); view([-13,8]);

xlabel(’x’); ylabel(’y’); zlabel(’z’);

grid on

pause

end

end

hold on

xf=sqrt(b*(r-1)); yf=sqrt(b*(r-1)); zf=r-1;

plot3(xf,yf,zf,’or’); plot3(-xf,-yf,zf,’or’); % plot fixed points

plot3(0,0,0,’or’);

hold off
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A Better Matlab Implementation

function [t,u]=ForwardEuler(f,tspan,u0,N);

% FORWARDEULER solves system of ODEs using the Forward Euler method

% [t,u]=ForwardEuler(f,tspan,u0,N) solves du/dt=f(t,u) with initial

% value u0 on the time interval tspan doing N steps of Forward

% Euler. Returns the solution in time and space in the matrix u, and

% also the corresponding time points in the column vector t.

dt=(tspan(2)-tspan(1))/N;

t=(tspan(1):dt:tspan(2))’;

u(1,:)=u0(:); % colon to make column vector

for n=1:N,

u(n+1,:)=u(n,:)+dt*f(t(n),u(n,:));

end;
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Properties of Discretizations
Local truncation error: error the method makes after one
step,

τ := ||u(∆t)− u1||,
where any suitable vector norm can be chosen. For Euler

τFE = ||u(∆t)− u1||
= ||u(0) + u ′(0)∆t + O(∆t2)− (u0 + ∆tf (0,u0))||
= O(∆t2)

Global truncation error: error the method makes after
many steps,

E := ||u(T )− uN ||, N∆t = T .

The global truncation error is one order less than the local
truncation error, Theorem 10.2 in Gander-Gander-Kwok
2014.

Better methods, like Runge-Kutta or linear multistep
methods, are in Chapter 10, Gander-Gander-Kwok 2014
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Dahlquist Test Equation
u̇ = λu, u(0) = u0, λ ∈ C =⇒ u(t) = u0e

λt .

Growing if <(λ) > 0, and decaying if <(λ) < 0.

What happens when we use Forward Euler?

un+1 = un + ∆tλun = (1 + ∆tλ)un =: RFE (z)un,

with z := ∆tλ ∈ C.

Region of absolute stability: |RFE (z)| < 1

<(z)

=(z)

21−1−2

2

1

−1

−2

<(z)

=(z)

21−1−2

2

1

−1

−2

Forward Euler Backward Euler
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Heat Equation
Parabolic partial differential equation, studied by Joseph
Fourier in 1822

∂tu(x , t) = ∆u(x , t) + f (x , t) in Ω× (0,T ],
u(x , 0) = u0(x) in Ω,
u(x , t) = g(x , t) on ∂Ω× (0,T ].

Example: A nail between ice cubes

0 L

x

ice cube ice cubenail

∂tu(x , t) = ∂xxu(x , t) in (0, L)× (0,T ],
u(x , 0) = u0(x) in (0, L),
u(0, t) = 0 in (0,T ],
u(L, t) = 0 in (0,T ].
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Numerical Approximation
Spatial mesh with grid points xj := j∆x , j = 0, 1, . . . , J,
∆x := L/J, approximates the Laplace operator by

∂xxu(x , t) ≈ u(x + ∆x , t)− 2u(x , t) + u(x −∆x , t)

∆x2
,

This leads to the system of ordinary differential equations

∂tuj(t) =
uj+1(t)− 2uj(t) + uj−1(t)

∆x2
,

Using now forward Euler in time gives

un+1
j − unj

∆t
=

unj+1 − 2unj + unj−1

∆x2
,

and with Backward Euler, we obtain

un+1
j − unj

∆t
=

un+1
j+1 − 2un+1

j + un+1
j−1

∆x2
.
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Approximate solution of the heat equation: FE
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Top row: approximate solutions at t = 0.001, t = 0.01 and
t = 0.1 using ∆x = 0.01 and ∆t = 0.00005.
Bottom row: results when using ∆t = 0.000050505 . . ..
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Approximate solution of the heat equation: BE
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Top row: approximate solution at t = 0.001, t = 0.01 and
t = 0.1 using ∆x = 0.01 and ∆t = 0.000050505 . . ..
Bottom row: results when using ∆t = 0.001.
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The Second Order Wave Equation
Hyperbolic partial differential equation, studied by
Jean-Baptiste le Rond d’Alembert in 1747:

∂ttu(x , t) = c2∆u(x , t) + f (x , t) in Ω× (0,T ],
u(x , 0) = u0(x) in Ω,
ut(x , 0) = ũ0(x) in Ω,
u(x , t) = g(x , t) on ∂Ω× (0,T ].

Example: vibration of a string fixed between two walls

0 L

x

wall wall

string

∂ttu(x , t) = ∂xxu(x , t) in (0, L)× (0,T ],
u(x , 0) = u0(x) in (0, L),

∂tu(x , 0) = 0 in (0, L),
u(0, t) = 0 in (0,T ],
u(L, t) = 0 in (0,T ].



PinT Summer
School

Martin J. Gander

Introduction

Historical Quotes

Causality

History

TOC

Application

Weather Prediction

Top 500

Model Problems

ODEs

Lorenz Equations

Dahlquist Test Equation

Heat Equation

Wave Equation

Damping

Transport Equation

The CFL Condition

Advection Reaction
Diffusion

4 Classes of
Methods

Multiple Shooting

DD and WR

Multigrid

Direct Methods

Numerical Approximation

Can use the same finite difference approximation in time and
space

un+1
j − 2unj + un−1

j

∆t2
=

unj+1 − 2unj + unj−1

∆x2
.

Need the values at t = 0,

u0
j = u(xj , 0),

and also at t = ∆t to start the three step recurrence. One
can use for this a Forward Euler approximation,

u1
j − u0

j

∆t
= ũ(xj).

Now how does a string of a musical instrument oscillate ?
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Approximate Solution
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Snapshots of the approximate solution of the string using the
classical wave equation at t = 0, 0.1, 0.5, 1, 2, 3 using for
L = 1, ∆x = ∆t = 0.02.
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Approximate Solution with smaller time step
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No sine shape developing like for a guitar for example!
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Starting with a different initial condition
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Visco-Elastic Damping

∂ttu(x , t) = ∂xxu(x , t) + γ∂xxtu(x , t)
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Snapshots of the approximate solution of the true string at
t = 0, 0.1, 0.5, 1, 2, 3.
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The Transport or Advection Equation
Simplest hyperbolic partial differential equation,

∂tu(x , t) + a∂xu(x , t) = f (x , t) in (0, L)× (0,T ],
u(x , 0) = u0(x) in (0, L),
u(0, t) = g(t) in (0,T ],

where a > 0 is the transport speed. For f = 0, the solution is
of the form u(x , t) = G (x − at) as one can see by inspection:

∂tu(x , t) + a∂xu(x , t) = G ′(x − at)(−a) + aG ′(x − at) = 0.

x

T

0 L

t

slope 1
a

u(x , t) = g(1− x
a )

u(x , t) = u0(x − at)



PinT Summer
School

Martin J. Gander

Introduction

Historical Quotes

Causality

History

TOC

Application

Weather Prediction

Top 500

Model Problems

ODEs

Lorenz Equations

Dahlquist Test Equation

Heat Equation

Wave Equation

Damping

Transport Equation

The CFL Condition

Advection Reaction
Diffusion

4 Classes of
Methods

Multiple Shooting

DD and WR

Multigrid

Direct Methods

Numerical Approximations
Introduce the finite difference operators

D+
∆xu

n
j :=

unj+1−u
n
j

∆x , D−∆xu
n
j :=

unj −u
n
j−1

∆x ,

D+
∆tu

n
j :=

un+1
j −unj

∆t , D−∆tu
n
j :=

unj −u
n−1
j

∆t .

Four possibilities to discretize the transport equation:

Forward Euler Upwind: (D+
∆t + aD−∆x)unj = f (xj , tn)

Backward Euler Upwind: (D−∆t + aD−∆x)un+1
j = f (xj , tn+1)

Forward Euler Downwind: (D+
∆t + aD+

∆x)unj = f (xj , tn)

Backward Euler Downwind: (D−∆t +aD+
∆x)un+1

j = f (xj , tn+1)

x

t

Forward
Euler

Upwind

Backward
Euler

Upwind

Forward
Euler

Downwind

Backward
Euler

Downwind
tn+1

tn

xjxj−1 xjxj−1 xj+1xj xj+1xj
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Which scheme should one use ?
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Forward Euler Upwind
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Backward Euler Upwind
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Which scheme should one use ?
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Forward Euler Downwind
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Backward Euler Downwind
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Using a smaller time step
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Backward Euler Upwind



PinT Summer
School

Martin J. Gander

Introduction

Historical Quotes

Causality

History

TOC

Application

Weather Prediction

Top 500

Model Problems

ODEs

Lorenz Equations

Dahlquist Test Equation

Heat Equation

Wave Equation

Damping

Transport Equation

The CFL Condition

Advection Reaction
Diffusion

4 Classes of
Methods

Multiple Shooting

DD and WR

Multigrid

Direct Methods

Using a larger time step
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Backward Euler Upwind
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The CFL Condition
Courant, Friedrich and Levy (1928): “If the domain of
dependence of the numerical scheme does not include the
domain of dependence of the exact solution, then it can not
converge.”

Example: Forward Euler Upwind

slope 1
a slope 1

a

x

t

∆t

∆x

∆t

∆x

CFL is satisfied. CFL is violated

∆t

∆x
≤ 1

a
which means a

∆t

∆x
≤ 1
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What happens if the CLF is violated?
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the CLF, middle and right not)
Below with less regular data not satisfying the CFL
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The CFL for Backward Euler Upwind

slope 1
a slope 1

a

x

t
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∆t

∆x

The domain of dependence of this scheme always includes
the characteristics, so the scheme should always work:
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What happens to downwind schemes ?
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a slope 1

a

x

t

∆t

∆x

∆t

∆x

slope 1
a slope 1

a

x

t

∆t

∆x

∆t

∆x



PinT Summer
School

Martin J. Gander

Introduction

Historical Quotes

Causality

History

TOC

Application

Weather Prediction

Top 500

Model Problems

ODEs

Lorenz Equations

Dahlquist Test Equation

Heat Equation

Wave Equation

Damping

Transport Equation

The CFL Condition

Advection Reaction
Diffusion

4 Classes of
Methods

Multiple Shooting

DD and WR

Multigrid

Direct Methods

Advection Reaction Diffusion Equations

Combinations of the terms we have seen in the earlier partial
differential equations

∂tu + a · ∇u = ν∆u − ηu + f in Ω× (0,T ],
u(x , 0) = u0(x) in Ω,
u(x , t) = g(x , t) on ∂Ω× (0,T ]

u = u(x , t) is the solution sought

a = a(x , t) represents the transport direction, which could
even depend on the solution u itself (e.g. in the case of the
Navier Stokes equations)

ν > 0 is the diffusion coefficient

η is the reaction coefficient of the linear reaction term in this
model

f (x , t) is a source term, which could also depend on the
solution u
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Getting back to the 4 Classes of Methods
1960

1970

1980

1990

2000

2010

Saha Stadel Tremaine 1996

Lions Maday Turinici 2001

large scalesmall scale small scale 

Horton Vandewalle 1995

Hackbusch 1984

Lubich Ostermann 1987

DIRECTITERATIVE

Nievergelt 1964

Burrage 1995

Gander Halpern Nataf 1999
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Shampine Watts 1969

Axelson Verwer 1985

Maday Ronquist 2008

Chartier Philippe 1993

Bellen Zennaro 1989

Gear 1988

Womble 1990 Worley 1991

Sheen Sloan Thomee 1999

Hairer Norsett Wanner 1992

Jackson Norsett 1986

Gander, Vandewalle 2007

Gander, Hairer 2007

2020

Picard Lindeloef 1893/4
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Christlieb Macdonald Ong 2010

Gander Guettel 2013Gander Kwok Mandal 2013
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Methods based on multiple shooting

Model problem: a semilinear partial differential equation in
one spatial dimension:

∂xxu(x) = f (u(x)) in (0, L),
u(0) = g0,
u(L) = gL,

x

u

g0

gL

L0

u(x)

Ω
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Idea of Shooting Methods
Transform the semilinear boundary value problem into a
simpler initial value problem

∂xxu(x) = f (u(x)) in (0, L),
u(0) = g0,

∂xu(0) = U,

which one can easily solve numerically using for example
Forward or Backward Euler. Choice of the shooting
parameter U?

x

u

g0

gL

L0

u1(x)

u2(x)

u3(x)

u4(x)

Ω
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Systematic Shooting
We have to solve the non-linear equation

F (U) := u(L,U)− gL = 0.

This is usually done using Newton’s method

Uk+1 = Uk − (F ′(Uk))−1F (Uk).

To calculate F ′(U), we just differentiate the ODE,

∂xxu(x ,U) = f (u(x ,U)) in (0, L),
u(0,U) = g0,

∂xu(0,U) = U

and obtain for F ′(U) = uU(x ,U) the linear ODE

∂xxuU(x ,U) = f ′(u(x ,U))uU(x ,U) in (0, L),
uU(0,U) = 0,

∂xuU(0,U) = I

However the problems we are interested in for time
parallelization are already initial value problems, there is no
target!
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Methods based on domain decomposition
Example: Schwarz domain decomposition for

∂xxu(x) = f (u(x)) in Ω := (0, L),
u(0) = g0,
u(L) = gL,

Decompose Ω into Ω1 := (0, β) and Ω2 := (α, L), and iterate

∂xxu
k
1 (x) = f (uk1 (x)) in Ω1, ∂xxu

k
2 (x) = f (uk2 (x)) in Ω2,

uk1 (β) = uk−1
2 (β), uk2 (α) = uk1 (α),

x

u

g0

gL

L0 α βΩ1
Ω2

u1
1(x)

u2
1(x)

u3
1(x)

u1
2(x)

u2
2(x)

u(x)
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Methods based on multigrid
Consider for simplicity a linear model problem

∂xxu(x) = f (x) in (0, L),
u(0) = 0,
u(L) = 0.

Discretization with centered finite differences:

Au :=
1

h2


−2 1

1 −2
. . .

. . .
. . . 1
1 −2




u1

u2
...
uJ

 =


f1
f2
...
fJ

 =: f ,

Introduce the matrix splitting A = L + D + U, D = −2
h2 I and

L =
1

h2

 1
. . .

1

 , U =
1

h2


1

. . .

1

 .
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Smoothers for multigrid
Jacobi stationary iterative method

Duk+1 = −(L + U)uk + f ,

Gauss-Seidel stationary iterative method

(L + D)uk+1 = −Uuk + f .

Edouard Stiefel (1952):

“sodass der positive Residualberg mit dem Löffel
statt mit einer Baggermaschine abgetragen wird!”

Also for damped Jacobi, obtained from

uk+1 = −D−1(L + U)uk + D−1f = uk + D−1(f − Auk),

and then adding the damping parameter ω,

uk+1 = uk + ωD−1(f − Auk).
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Smoothing property of damped Jacobi
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Error after one, two and three damped Jacobi steps.
ω = 1 (top), ω = 2

3 (middle), ω = 1
2 (bottom)
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Multigrid idea: correct on coarser grid

For k = 0, 1, . . . compute

uk+ 1
3 = S(f ,uk , ν1) ; % presmoothing

uk+ 2
3 = uk+ 1

3 + PA−1
c R(f − Auk+ 1

3 ) % coarse correction

uk+1 = S(f ,uk+ 2
3 , ν2) ; % postsmoothing
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Error before and after the coarse correction for the first,
second and third two grid iterations with two damped Jacobi
steps used as a presmoother with damping parameter ω = 2

3 .

For multigrid, one uses this idea recursively for A−1
c !
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Direct time parallel methods
Take for example

∂tu = f (t, u) in (0,T ], u(0) = u0

Backward Euler discretization

un+1 = un + ∆tf (tn, un+1),

normally solved by forward substitution

u1 = u0 + ∆tf (t1, u1)
u2 = u1 + ∆tf (t2, u2)
u3 = u2 + ∆tf (t3, u3)

...
...

...

All at once system:

F (u) =


u1 − u0 −∆tf (t1, u1)
u2 − u1 −∆tf (t2, u2)

...
uN − uN−1 −∆tf (tN , uN)

 = 0.
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Direct solution without iteration

Such non-linear systems must in general be solved by
iterative methods, for example Newton’s method.

In the linear case, when f (t, u) = au + g(t), the all at once
system becomes

1−∆ta
−1 1−∆ta

. . .
. . .

−1 1−∆ta




u1

u2
...
uN

 =


∆tg(t1) + u0

∆tg(t2)
...

∆tg(tN)


Direct solution by Gaussian elimination ? Just forward
substitution again!

Direct time parallel methods solve such systems faster than
by forward substitution using many processor, without
iteration!
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