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Martin J. Gander

“The integration methods introduced in this paper are to be

regarded as tentative examples of a much wider class of numerical Hiserea[Qlires
procedures in which parallelism is introduced at the expense of

redundancy of computation.”

Jorg Nievergelt 1964

“Parallel algorithms for solving initial value problems for
differential equations have received only marginal attention in the
literature compared to the enormous work devoted to parallel
algorithms for linear algebra. It is indeed generally admitted that
the integration of a system of ordinary differential equations in a
step-by-step process is inherently sequential.”

Philippe Chartier and Bernard Philippe 1993

“La parallélisation qui en résulte se fait dans la direction
temporelle ce qui est en revanche non classique.”

Jacques-Louis Lions, Yvon Maday and Gabriel Turinici 2001
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The time direction is special for parallelization, because of
the causality principle: the solution later in time is
determined by the solution earlier in time, and never the
other way round.

Causality

Example: 9¢ = f(u), u(to) = uo, Euler: % ~ %;“(fn)

up = ug + Atf(u())

up u1

» t

to t1 b t3 ty ts tg tr tg to tio t11 t12
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the causality principle: the solution later in time is
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The time direction is special for parallelization, because of
the causality principle: the solution later in time is
determined by the solution earlier in time, and never the
other way round.
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Example: 9¢ = f(u), u(to) = uo, Euler: % ~ %;“(fn)
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The time direction is special for parallelization, because of
the causality principle: the solution later in time is
determined by the solution earlier in time, and never the
other way round.
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The time direction is special for parallelization, because of
the causality principle: the solution later in time is
determined by the solution earlier in time, and never the
other way round.

Example: 9¢ = f(u), u(to) = uo, Euler: % ~ %;“(fn)

Us = ug + Atf(U4)

Uy usz Ua
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The time direction is special for parallelization, because of
the causality principle: the solution later in time is
determined by the solution earlier in time, and never the
other way round.

Example: 9¢ = f(u), u(to) = uo, Euler: % ~ %;“(fn)

U = Us + Atf(U5)

up 3 Us  ug
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Causality Principle School

Martin J. Gander
The time direction is special for parallelization, because of
the causality principle: the solution later in time is
determined by the solution earlier in time, and never the
other way round.

Causality

Example: 9¢ = f(u), u(to) = uo, Euler: % ~ u(tny1)—u(tn)

At

Unt1 = U + Atf(up)

uig Y11 wuqpp

» t

to t1 b t3 ty ts tg tr tg to tio t11 t12
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Theophrastus, c. 371 - c. 287 BC

“They are less certain when the moon is not full. If
the moon looks fiery, it indicates breezy weather for
that month, if dusky, wet weather; and, whatever
indications the crescent moon gives, are given when
it is three days old.”

Weather Prediction

Richardson (1922): Weather Prediction by Numerical
Process (100 years!)

“Perhaps some day in the dim future it will be pos-
sible to advance the computations faster than the
weather advances and at a cost less than the saving
to mankind due to the information gained. But that
is a dream.”
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Richardson'’s vision (Stephen Conlin, 1986)
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Edward N. Lorenz (1979) PinT Summer

On the prevalence of aperiodicity in simple systems ElartinliiGandey

“As the lone meteorologist at a seminar of mathematicians, |
feel that a few words regarding my presence may be in order.
Let me begin with some remarks about the mathematics of
meteorology.

One of the most familiar problems of interest to
meteorologists is weather forecasting. Mathematically this is
an initial-value problem. The atmosphere and its
surroundings are governed by a set of physical laws which in
principle can be expressed as a system of integro-differential
equations.

At the turn of the century, the forecast problem was
identified by Bjerknes as the problem of solving these
equations, using initial conditions obtained from observations
of current weather. Detailed numerical procedures for solving
these equations were formulated during World War | by
Richardson, but the practical solution of even rather crude
approximations had to await the advent of'computers.”

Weather Prediction
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Weather Prediction Equations Sehool
Oru(x,t) = L(u(x,t)) in Q x (0, T], Martin J. Gander
u(x,0) = wo(x) in Q,
B(u(x,t)) = g(x,t) on 012, Histrca Quotes

Causality
u contains the wind vector, temperature, pressure etc. o
If ug is known over Switzerland, we can predict the weather,
using g from a European weather model. Wl sl
Top 500
12.09 11:00 CEST
ODEs

Lorenz Equations
Dahlquist Test Equation
Heat Equation

Wave Equation
Damping

Transport Equation

The CFL Con

Advection Reaction
Diffusion

Multiple Shooting
DD and WR
Multigrid

Direct Methods
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Computing Weather Prediction Step by Step Sehoal
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The solution u(x,t + At) depends on the solution u(x, t)
for any At > 0:

A
' Westher Predi
oond b uerionn i
t+ At T u(x,t+ At) T
t T u(x,t) T
0 T u(x,0) T N

Q (Switzerland)
This is again an entirely sequential process, impossible to use
effectively all processors to compute u(x, t + At) from
u(x, t), there are simply too many processors.



Evolution of Computing Systems

Rank Site

1

National Supercomputing Center in
Wuxi
China

National Super Computer Center in
Guangzhou
China

Swiss National Supercomputing Centre
(cscs)
Switzerland

Japan Agency for Marine-Earth Science
and Technology
Japan

DOE/SC/0ak Ridge National Laboratory
United States

Rmax

System Cores (TFlop/s)

Sunway TaihuLight - Sunway
MPP, Sunway SW26010 260C
1.45GHz, Sunway

NRCPC

10,649,600 93,014.6

Tianhe-2A - TH-IVB-FEP
Cluster, Intel Xeon E5-2692 12C
2.200GHz, TH Express-2, Intel
Xeon Phi 31S1P

NUDT

3,120,000 33,862.7

Piz Daint - Cray XC50, Xeon 361,760 19,590.0
E5-2690v3 12C 2.6GHz, Aries

interconnect, NVIDIA Tesla

P100

Cray Inc.

Gyoukou - ZettaScaler-2.2 HPC 19,860,000 19,135.8
system, Xeon D-1571 16C

1.3GHz, Infiniband EDR, PEZY-

SC2 700Mhz

ExaScaler

Titan - Cray XK7, Opteron 6274 560,640
16C 2.200GHz, Cray Gemini
interconnect, NVIDIA K20x

Cray Inc.

17,590.0

Top 500 list in November 2017

Rpeak
(TFlop/s)

125,435.9

54,902.4

25,326.3

28,192.0

27,112.5

Power
(kW)

15,371

17,808

2,272

1,350

8,209

N)
?
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Evolution of Computing Systems

Rank

System

Frontier - HPE Cray EX235a, AMD Optimized 3rd
Generation EPYC 64C 2GHz, AMD Instinct MI250X,
Slingshot-11, HPE

DOE/SC/0ak Ridge National Laboratory

United States

Supercomputer Fugaku - Supercomputer Fugaku, A64FX
48C 2.2GHz, Tofu interconnect D, Fujitsu

RIKEN Center for Computational Science

Japan

LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation
EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE
EuroHPC/CSC

Finland

Summit - IBM Power System AC922, IBM POWER9 22C
3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR
Infiniband, IBM

DOE/SC/Oak Ridge National Laboratory

United States

Sierra - IBM Power System AC922, IBM POWER9 22C
3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR
Infiniband, IBM / NVIDIA / Mellanox
DOE/NNSA/LLNL

United States

Top 500 list in June 2022

Cores

8,730,112

7,630,848

1,110,144

2,614,592

1,572,480

Rmax
(PFlop/s)

1,102.00

442.01

151.90

148.60

94.64

Rpeak
(PFlop/s)

1,685.65

537.21

214.35

200.79

125.71

Power
(kw)

21,100

29,899

2,942

10,096

7,438
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Ordinary Differential Equations

General system of ordinary differential equations (ODEs)

Oru(t) = F(t,u(t)) t e (0, T],
u(0) = uy,

Edward N. Lorenz (1979): On the prevalence of
aperiodicity in simple systems
“The first task was to find a suitable system of equa-
tions to solve. In principle any nonlinear system
might do, but a system with some resemblance to
the atmospheric equations offered the possibility of
some useful by-products.”

Lorenz Equations: for parameters o,r, b € R:

X = —ox+oy x(0) = xo,
y —xz+mx—y y(0) = yo,
z = xy—bz z(0) = z,

PinT Summer
School

Martin J. Gander



Fixed Points and Trajectories AT

School

Martin J. Gander

X = —ox+oy x(0)

= X0,
y = —xz+mx—y y(0)=y,
z = xy—bz z(0) = 2,

Fixed points: when x =y =z =0,
1. x=y=2z=0,

2. x=y=2b(r-1), z=r—1 p—



Fixed Points and Trajectories

X = —ox+oy x(0)

= X0,
y = —xz+rmx—y y(0)=yo,
z = xy—bz z(0) = z,

Fixed points: when x =y =z =0,
1. x=y=2z=0,

2. x=y==4yb(r—1),z=r—-1.

PinT Summer
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The Butterfly Effect i
Martin J. Gander
Edward N. Lorenz (1979): On the prevalence of
aperiodicity in simple systems

“Two states differing by imperceptible amounts may

eventually evolve into two considerably different

states ... If, then, there is any error whatever in ob-

serving the present state — and in any real system

such errors seem inevitable — an acceptable predic- BT
tion of an instantaneous state in the distant future

may well be impossible. . .. In view of the inevitable

inaccuracy and incompleteness of weather obser-

vations, precise very-long-range forecasting would

seem to be nonexistent.”

This led to the famous saying that the flapping of the wings
of a butterfly in Europe can change the weather completely
in the US.
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Numerical Approximations Sehool
Martin J. Gander
In the general system of ordinary differential equations

(ODEs)

Owu(t) = F(t,u(t)) t e (0, T],
u(0) = uy,

one approximates the time derivative by a finite difference,

U(t + At) — u(t) Lorenz Equations
At

8tu ~
The two most simple methods are Euler methods:

» Forward Euler: u,,%;un = f(tn, up),

» Backward Euler:: % = f(tpt1, Unt1)-

Forward Euler is much easier to use than Backward Euler!
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sigma=10;r=28;b=8/3;
£=0(t,x) [sigma*(x(2)-x(1)); r*x(1)-x(2)-x(1)*x(3); x(1)*x(2)-b*x(3)];
T=30;N=30000;dt=T/N;

x=[20;5;-5];
for i=1:N
x(:,i+1)=x(:,i)+dt*f (i*xdt,x(:,1)); % Forward Euler step
if mod(i,100)==0 % plot only every 100th
plot3(x(1,:),x(2,:),x(3,:),’-b’); % for animation speed
axis([-20 30 -30 40 -10 60]); view([-13,8]); Lorenz Equations
xlabel(’x’); ylabel(’y’); zlabel(’z’);
grid on
pause
end
end
hold on
xf=sqrt(b*(r-1)); yf=sqrt(b*(r-1)); zf=r-1;
plot3(xf,yf,zf,’or’); plot3(-xf,-yf,zf,’or’); % plot fixed points

plot3(0,0,0,%0r’);
hold off



A Better Matlab Implementation

function [t,ul=ForwardEuler(f,tspan,u0,N);

% FORWARDEULER solves system of ODEs using the Forward Euler method

%  [t,u]l=ForwardEuler(f,tspan,u0,N) solves du/dt=f(t,u) with initial
%  value uO on the time interval tspan doing N steps of Forward

%  Euler. Returns the solution in time and space in the matrix u, and
% also the corresponding time points in the column vector t.

dt=(tspan(2)-tspan(1))/N;
t=(tspan(1) :dt:tspan(2))’;
u(l,:)=u0(:); % colon to make column vector
for n=1:N,
u(n+1,:)=u(n, :)+dt*f(t(n) ,uln,:));
end;

PinT Summer
School

Martin J. Gander

Lorenz Equations
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Properties of Discretizations Sehool
Local truncation error: error the method makes after one G Il Ericler
step,
7= [|lu(At) — w]],

where any suitable vector norm can be chosen. For Euler

e = ||u(At) — uy]]
= ||u(0) + u'(0)At + O(Atz) — (ug + Atf(0, up))||
o(At?) N

Global truncation error: error the method makes after
many steps,

E:=||u(T)—up|, NAt=T.
The global truncation error is one order less than the local

truncation error, Theorem 10.2 in Gander-Gander-Kwok
2014.

Better methods, like Runge-Kutta or linear multistep
methods, are in Chapter 10, Gander-Gander-Kwok 2014
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w, AeC = u(t) = upe™.
if R(A) < 0.

u(0)

U= A\u,
Growing if ®(A\) > 0

ing

and decayi

What happens when we use Forward Euler?

: Ree(2)un,

(1+ AtA)up

un + AtAu,

= At) e C.
Region of absolute stability

Upt1

th z

Wi

—
V

|Rre(2)

Dahlquist Test Equation

o D

NNNYNNNNNNNNN

(SZ N NN NN

NANNNNNNNNNNNNNNNY

+ iy
NN AR
SNNIINANNNNNNY
SANINARANNNNNY
AANIIINILIAIANNY

SEYIIIINNINNNNNNY
7///////////////

Backward Euler

Forward Euler



Heat Equation

Parabolic partial differential equation, studied by Joseph

Fourier in 1822

Oru(x,t) = Au(x,t)+f(x,t) inQx(0,T],
u(x,0) = up(x) in Q,
u(x,t) = g(x,t) on 092 x (0, T].
Example: A nail between ice cubes
ice cube nail ice cube
Xy
0 L
Oru(x,t) = Oxu(x,t) in(0,L) x (0, T],

u(x,0) = wp(x) in (0,L),
u(0,t) = 0 in (0, T],
u(L,t) = 0 in (0, TJ.

PinT Summer
School
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Heat Equation



Numerical Approximation it
Spatial mesh with grid points x; := jAx, j =0,1,...,J, MExin Jl €l

Ax := L/J, approximates the Laplace operator by

u(x + Ax, t) — 2u(x, t) + u(x — Ax, t)
Ax? ’

Oxxc(x, t) ~

This leads to the system of ordinary differential equations

uj1(t) — 2u;(t) + uja(2)

atUj(t) = AX2 ’

Heat Equation

Using now forward Euler in time gives
n+l _  .n n n n
u; ui oy 2uj +uily

At Ax? ’

and with Backward Euler, we obtain

uttt g gL oyttt

J Jo_ i+l J Jj—1

At Ax?




Approximate solution of the heat

equation: FE

SN

/ \\
\

1

o 02 04 08

0z 04 06

08

08

Top row: approximate solutions at t = 0.001, t = 0.01 and
t = 0.1 using Ax = 0.01 and At = 0.00005.
Bottom row: results when using At = 0.000050505.. ..
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Approximate solution of the heat equation: BE

— = » [ 2
/ \\ -
/ \ o / \ .
6 / \ 1
1 / \ 18
| | / \
| | / \
| {20}/ \ 0
| | / \ —
| \ 6 s
| | / \
et/ s
I
i
1 s
21/ 2
o o
02 04 o5 o8 % 02 o 05 05 % 0z 04 05 )
= — S M 2
\ m N s
16 \ 1
/ \
| 14 \ 14
| |
| \ / \
| v oot \ 2
| =0t/ \ 10
| s 8 ~ N
{ / \
6 s
|
atf 4
o .
o o

Top row: approximate solution at t = 0.001, t = 0.01 and
t = 0.1 using Ax = 0.01 and At = 0.000050505....
Bottom row: results when using At = 0.001.
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Heat Equation



The Second Order Wave Equation
Hyperbolic partial differential equation, studied by

PinT Summer
School

Martin J. Gander

Jean-Baptiste le Rond d'Alembert in 1747:

Owu(x,t) = c?Au(x,t)+ f(x,t) in Qx (0, T],
u(x,0) = uop(x) in Q,
ut(xa 0) = ﬁo(X) in Q7
u(x,t) = g(x,t) on 9Q x (0, T].
Example: vibration of a string fixed between two walls
string
wa I I wa | I Wave|Equation
Xy
0 L
Onu(x,t) = Owu(x,t) in(0,L) x (0, T],
u(x,0) = wp(x) in (0,L),
Oru(x,0) = 0 in (0, L),
( ) =0 In (07 T]a
u(L,t) = 0 in (0, T].
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Numerical Approximation Sehool
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Can use the same finite difference approximation in time and
space

n+1l n n—1 n n n
u; 2uJ + u; Uiy 2uJ- +ul

At? Ax?

Need the values at t = 0,

uJ(-) = u(x;,0),

Wave Equation

and also at t = At to start the three step recurrence. One
can use for this a Forward Euler approximation,

1_,0
i uj

“ar i)

Now how does a string of a musical instrument oscillate ?



Approximate Solution

Snapshots of the approximate solution of the string using the
classical wave equation at t = 0,0.1,0.5,1, 2, 3 using for

L=1, Ax = At =0.02.

PinT Summer
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Wave Equation
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Starting with a different initial condition i
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Orru(x, t) = Oxxt(x, t) + YOxxr u(x, t)

Damping
o o . o
/// ™
02 02 P \\ 02
7 AN
7 AN
N e yd
N - " MEIN s
. // ~__
0

Snapshots of the approximate solution of the true string at
t=0,0.1,0.5,1,2,3.



The Transport or Advection Equation it
Simplest hyperbolic partial differential equation, Mevdto 4. Genelar

Oru(x, t) + adxu(x,t) = f(x,t) in(0,L)x (0, T],
u(x,0) = we(x) in(0,L),
u(0,r) = g(t) in(0,T],
where a > 0 is the transport speed. For f = 0, the solution is
of the form u(x, t) = G(x — at) as one can see by inspection:

Oru(x, t) + adxu(x, t) = G'(x — at)(—a) + aG'(x — at) = 0.

t
=g(1-3%)
l s Vi Transport Equation
/ /
7/ 7/
7/ 7/
7/ / 1
, , “slope 3
/ /
= ug(x — at) ~
Xy )/ 0( )/
/ /
7/
> x
0 L



Numerical Approximations
Introduce the finite difference operators

n

+ oo Yy — o . Yuly
Dacuj = “xs Dayi = x5
un+1_u(1 u(y_unfl
Dfun = J J Do u? = J
At©j At AtYy At

Four possibilities to discretize the transport equation:
Forward Euler Upwind: (Df, + aDy, )u Jul' = f(x, tn)
Backward Euler Upwind: (Dx, + aDx, )u ) " — (X, thy1)
Forward Euler Downwind: (DX, + aD} ) ul! = f(xj, tn)

Backward Euler Downwind: (Dx,+aDX )u"Jrl f(xj, thy1)
t
Forward Backward Forward Backward
Euler Euler Euler Euler
Upwind Upwind Downwind Downwind

T LT

X1 XX X X X X1
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Transport Equation



Which scheme should one use ?

Forward Euler Upwind
:
o
o
o
w
o
M
o
o
o

Backward Euler Upwind
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Which scheme should one use 7

1 ' '
09 09 09
08 08 08
07 07 07
06 06 06
0s so0s s0s
04 04 04
03 03 03
02 0z 0z
01 01 01
02 04 06 0% 02 04 06 08 0z 04 06 08
x x

Backward Euler Downwind
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Using a smaller time step

. ! \
0 0 o os
08 08 3 08
o o o
os o os
os 208 205
o 0 o
os os os
02 0 0
o o o
T S TEE T T

.

00

0s

o

os

os

o

0s

02

o

Backward Euler Upwind
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Using a larger time step

15 15 15
1 1 1 o
05 05 05
05 05 05
0 02 04 05 08 1 o 02 04 06 08 1 0 02 04 06 08 i
x x

Forward Euler Upwind

Backward Euler Upwind
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The CFL Condition

School

Courant, Friedrich and Levy (1928): “If the domain of Martin J. Gander
dependence of the numerical scheme does not include the

domain of dependence of the exact solution, then it can not
converge.”

Example: Forward Euler Upwind

t
A
pd §d
/ /
/ I At /
/ /
o0 , At
S—> /
/ / AX , / Q@) The CFL Condition
slope %/ slope %/ >
7 Ax
» X
CFL is satisfied. CFL is violated
At 1 At
— < -~  which means a— <1
Ax — a Ax —



What happens if the CLF is violated?
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o) 12 o5
09 O
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08 ; Y Historical Quotes
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- A fe}
02 . £ [« . v Weathe
@ " ) 2 @ . 2 Veather Prediction
o1 . 0 Top 500
02 - 0.2
02 04 05 ) 1 o 0z 04 06 08 I 02 04 05 08 1

Forward Euler Upwind under mesh refinement (left satisfying

the CLF, middle and right not)

Below with less regular data not satisfying the CFL

ODEs
Lorenz Equations
Dahlquist Test Equation
Heat Equatiof

Wave Equation

Damping

Transport Equation
The CFL Condition

Advection Reaction

(oS Diffusion
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i °
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X o
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.
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Multiple Shooting




The CFL for Backward Euler Upwind i

Martin J. Gander

t Ax
A
’ \’\ . t:
/
At -~
/ At
/
/ sther Predictior
/
1 7 17
slope 3/ slope -/
/ / Lorenz Equation
> X ‘r“““L“““ o
The domain of dependence of this scheme always includes L
the characteristics, so the scheme should always work: Transpert Equatio

The CFL Condition

tion Reaction
Diffusion




PinT Summer

What happens to downwind schemes ? Sehool
t Martin J. Gander
A

pd §d
,/ At ,
4 4 At
/ /
/ «—> /
// AX //
slope %/ slope % / >
Ax
» X
t Ax Ax
A <« -«
/. /. The CFL Condition
YN ,/
d 4 At
/ /
/ /
/ /
/ /
slope %/ slope %/
/ /
» X



Advection Reaction Diffusion Equations

Combinations of the terms we have seen in the earlier partial
differential equations

u+a-Vu = vAu—nu+f inQx(0,T],
u(x,0) = uo(x) in Q,
u(x,t) = g(x,t) on 992 x (0, T]

u = u(x,t) is the solution sought

a = a(x, t) represents the transport direction, which could
even depend on the solution u itself (e.g. in the case of the
Navier Stokes equations)

v > 0 is the diffusion coefficient

7 is the reaction coefficient of the linear reaction term in this
model

f(x,t) is a source term, which could also depend on the
solution u

PinT Summer
School
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Advection Reaction
Diffusion



Getting back to the 4 Classes of Methods

small scale

large scale

small scale

1960

1970

1980

1990

2000

2010

2020

ITERATIVE
Picard Lindeloef 1893/4

} }

Lelarasmee Ruehli Sangiovanni—Vincentelli 1982
Hackbusch 1984

Lubich Ostermann 1987
Womble 1990 - --------——--- Bellen Zennaro 1989
Chartier Philippe 1993
Horton Vandewalle 1995

Saha Stadel Tremaine 1996
Gander 1996
———————————————————— Gander -Halpern-Nataf-1999-------
Lions Maday Turinici 2001

Gander, Vandewalle 2007

Gander, Hairer 2007

Emmett-Minion-2010/2012-------
Gander Kwok Mandal 2013
ander Neumueller 2014

G:
Falgout, Friedhoff, Kolev, MacLachlan, Schroder 2
Gande

Gear 1988

DIRECT

Nievergelt 1964

Miranker Liniger 1967

Axelson Verwer 1985
Jackson Norsett 1986

""""""" Worley 1991~~~
Hairer Norsett Wanner 1992

Burrage 1995

Sheen Sloan Thomee 1999
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Methods based on multiple shooting M ool

L Martin J. Gander
Model problem: a semilinear partial differential equation in

one spatial dimension:

Owu(x) = f(u(x)) in(0,L),

U(O) = &0,
u(l) = g,
u
A
u(x)
8L
80

©A
o]
'\



|dea of Shooting Methods
Transform the semilinear boundary value problem into a
simpler initial value problem

Ocu(x) = f(u(x)) in(0,L),

u(0) = go,
oxu(0) = U,

which one can easily solve numerically using for example
Forward or Backward Euler. Choice of the shooting

parameter U?
u 1

PinT Summer
School

Martin J. Gander

Multiple Shooting



. - inT Summer
Systematic Shooting ™" sehoal
We have to solve the non-linear equation ElartinliiGandey

F(U) :=u(L,U)— g =0.
This is usually done using Newton’s method
Ukt — UK — (F/(U%)"LF(UX).
To calculate F’(U), we just differentiate the ODE,

O u(x,U) = f(u(x,U)) in(0,L),
U(O, U) = &80
oxu(0,U) = U
and obtain for F'(U) = uy(x, U) the linear ODE
Owty(x,U) = f'(u(x,U))uy(x,U) in (0,L),
uy(0,U) = 0,
aXUU(O, U) — / Multiple Shooting

However the problems we are interested in for time
parallelization are already initial value problems, there is no
target!



Methods based on domain decomposition i
Example: Schwarz domain decomposition for MExin Jl €l
Owt(x) = f(u(x)) inQ:=(0,L),
u(0) = go,
u(l) = &

Decompose Q into Q; := (0, 5) and Q3 := (a,
Oxctf(x) = F(UF(x)) in Q1, Oxxth(x)
uf(8) = us (B), uj(@) = uf(a),

DD and WR




PinT Summer

Methods based on multigrid Sl
Consider for simplicity a linear model problem MExin Jl €l

Owu(x) = f(x) in(0,L),

u(0) = 0,
u(l) = 0.
Discretization with centered finite differences:
-2 1 u f
— . un f;
PN o I B
T | : :
1 -2 uy fy

Introduce the matrix splitting A= L+ D+ U, D = 72/ and

]' 1 1 Multigrid



PinT Summer

Smoothers for multigrid Sehoal

Jacobi stationary iterative method Martin J. Gander

Du*™! = —(L+ U)u* + f,
Gauss-Seidel stationary iterative method
(L+ D)u* ™t = —Uu* + f.

Edouard Stiefel (1952):
“sodass der positive Residualberg mit dem Loffel
statt mit einer Baggermaschine abgetragen wird!”

Also for damped Jacobi, obtained from
= DL+ U)u* + D7 = u¥ + DI(F — Aub),
and then adding the damping parameter w,

Multigrid

ukt = uk + WD7I(F — Aub).



School

Smoothing property of damped Jacobi P Summer

A \ A Martin J. Gander
0.8 \ /\ \ 08 \ 0.8 \
\ [\ \ \ / \
NN / | L wosl A A N / [\
v, 06 [\ \ \ 0.6 \ / \ \ \ 0.6 BN
5 a / Vs AAYWa \ 5 \
Soal \/\/ | 1 2oat | v \ 204t \ ¥ Feriest] @i
5 | || s / \l e |/ \ Causalit
502l 502t/ | So2t/
/ / \ / Histor
0 0 0 TOC
0 05 1 0 05 1 0 05 1
X X X
! 1 1 Neather Predi n
0.8 . 08 Top 500
/ —
06 . /\ / ©06 /\\/ ﬂ\
Lo4 4t \7 / \{ Loat \ oDE
<] | /" \| & / \\ Lorenz Equation:
802 \ =1/ \ 02y \ Dahlquist Test Equation
of ‘ BJ | o" Heat Equatio
ave Equatic
0 05 1 0 05 1 0 05 T uation
X X M Damping
1 1 1 Transport Equatior
08 0.8 The C nditiof
~ T Advection Reactio
T, 06 — N 06 N Diftsion
i / \ o Ny \
Lo4 J/ — \{ Zoa4 \\
g | / \l s |/ \
© 0.2 / \1 027/ \
| / / \
| / \ / ultiple Shootin
0 0 0 DD and WF
0 05 1 0 05 1 0 05 1 Multigrid
X X X

Direct Methoc

Error after one, two and three damped Jacobi steps.
w =1 (top), w = 3 (middle), w = 1 (bottom)
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Multigrid idea: correct on coarser grid

Martin J. Gander

For k=0,1,... compute

1 .
ukts = S(f,uk, 1), % presmoothing

2 1 1 .
ukt3 = u*t3 £ PAZIR(F — Aukt3) % coarse correction

2 .
uktl = S(F,ukt3 1) % postsmoothing

1 1
——before coarse ——before coarse ——before coarse
0.8 ——after coarse 0.8 ——after coarse 0.8 ——after coarse
" 0.6 \ / S os 06
= / = =
£o4 204 £o04
5 5 5
502t 502 502
I e O o—_— 0
0 05 1 0 05 1 0 05 1
X X X

Error before and after the coarse correction for the first,
second and third two grid iterations with two damped Jacobi
steps used as a presmoother with damping parameter w = 2

3 Multigrid

For multigrid, one uses this idea recursively for AZ!!



Direct time parallel methods it
Take for example Martin J. Gander

Oru = f(t,u) in (0, T], u(0)=up
Backward Euler discretization
Unt1 = Up + Atf(tn, Upt1),

normally solved by forward substitution

u = UO+Atf(t1,U1)
u = U1+Atf(t2,U2)

uz = UQ+Atf(t3,U3)

All at once system:

uy — ug — Atf(tl, Ul)
up — up — Atf(tg, U2)

F(u) = =0.

Direct Methods

uy — uUny—1 — Al’f(t/\/, UN)



PinT Summer

Direct solution without iteration School

Martin J. Gander
Such non-linear systems must in general be solved by

iterative methods, for example Newton's method.

In the linear case, when f(t, u) = au + g(t), the all at once
system becomes

1— Ata u Atg(ty) + up
-1 1-Ata up Atg(tr)
—11— Ata uy Atg(ty)

Direct solution by Gaussian elimination ? Just forward
substitution again!

Direct time parallel methods solve such systems faster than
by forward substitution using many processor, without B (et
iteration!
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