
LLNL-PRES-811622
This work was performed under the auspices of the U.S. 
Department of Energy by Lawrence Livermore National 
Laboratory under contract DE-AC52-07NA27344. 
Lawrence Livermore National Security, LLC

Parallel in Time with SUNDIALS and XBraid

PinT 2020 – 9th Parallel-in-Time Workshop

David J. Gardner1, Robert D. Falgout 1, Daniel R. Reynolds2, and Carol S. Woodward1

1 Center for Applied Scientific Computing, LLNL
2 Department of Mathematics, SMU



2
LLNL-PRES-811622

SUNDIALS: SUite of Nonlinear and Differential / 
ALgebraic equation Solvers
§ Software library of ODE and DAE time integrators and nonlinear solvers

— Consists of six packages: CVODE(S), ARKode, IDA(S), and KINSOL
— Written in C with interfaces to Fortran
— Designed to be easily incorporated into existing codes

§ Modular implementation
— Data use is fully encapsulated by vector and matrix APIs
— Nonlinear and linear solvers are fully encapsulated from the integrators
— All parallelism is encapsulated in vectors, solvers, and user-supplied functions
— Vector, matrix, and solver modules can all be user-supplied

§ Availability and support
— Freely available; BSD 3-Clause license; >27,000 downloads in 2019
— Detailed user manuals and an active user community email list

https://computing.llnl.gov/sundials



3
LLNL-PRES-811622

§ The ARKode package is designed to work as an infrastructure for developing 
adaptive one-step time integration methods.

— ARKStep: Provides ERK, DIRK, and IMEX ARK methods for problems of the form 

— ERKStep: A streamlined module for ERK methods for problems of the form

— MRIStep: Multirate Infinitesimal Step (MIS) like methods for problems of the form

𝑀
𝑑𝑦
𝑑𝑡 = 𝑓! 𝑡, 𝑦 + 𝑓" 𝑡, 𝑦 , 𝑦 𝑡# = 𝑦#

𝑑𝑦
𝑑𝑡 = 𝑓$ 𝑡, 𝑦 + 𝑓% 𝑡, 𝑦 , 𝑦 𝑡# = 𝑦#

𝑑𝑦
𝑑𝑡 = 𝑓 𝑡, 𝑦 , 𝑦 𝑡# = 𝑦#

ARKode – Adaptive Runge-Kutta methods 



4
LLNL-PRES-811622

§ IMEX ARK methods for problems with two split components:

— 𝑀 is any nonsingular linear operator (mass matrix, typically 𝑀 = 𝐼), 
— 𝑓! 𝑡, 𝑦 contains the explicit (non-stiff) terms,
— 𝑓"(𝑡, 𝑦) contains the implicit (stiff) terms. 

§ Combine two s-stage RK methods; let 𝑡&,(∗ = 𝑡& + 𝑐(ℎ&, ℎ& = 𝑡&*+ − 𝑡&: 

𝑀
𝑑𝑦
𝑑𝑡 = 𝑓! 𝑡, 𝑦 + 𝑓" 𝑡, 𝑦 , 𝑦 𝑡# = 𝑦#

𝑀𝑧, = 𝑀𝑦& + ℎ&0
(-+

,.+
𝐴,,(! 𝑓! 𝑡&,(! , 𝑧( + ℎ&0

(-+

,
𝐴,,(" 𝑓" 𝑡&,(" , 𝑧( , 𝑖 = 1, … , 𝑠

𝑀𝑦&*+ = 𝑀𝑦& + ℎ&0
(-+

/
𝑏(!𝑓! 𝑡&,(! , 𝑧( + 𝑏("𝑓" 𝑡&,( , 𝑧(

𝑀7𝑦&*+ = 𝑀𝑦& + ℎ&0
(-+

/
8𝑏(!𝑓! 𝑡&,(! , 𝑧( + 8𝑏("𝑓" 𝑡&,( , 𝑧(

(solution)

(embedding)

ARKStep – Additive Runge-Kutta methods 



5
LLNL-PRES-811622

§ All SUNDIALS integrators utilize local truncation error estimates to adapt the 
step size to meet user defined tolerances

— With Runge-Kutta methods the error estimate is based on the difference between 
the computed and embedded solutions

— Accept the step if 𝐸 ℎ& 012/ < 1, otherwise reject the step
— Choose ℎ&*+ such that 𝐸(ℎ&*+) < 1

§ Relative tolerance (𝑟𝑡𝑜𝑙) controls local error relative to the size of the solution
— 𝑟𝑡𝑜𝑙 = 10.3 means that errors are controlled to 0.01%

§ Absolute tolerances (𝑎𝑡𝑜𝑙) control error when a solution component may be small
— e.g., 𝑎𝑡𝑜𝑙, should be the noise level for a solution component

Time steps are chosen to minimize local 
truncation error and maximize efficiency

𝑤, =
1

𝑟𝑡𝑜𝑙 𝑦, + 𝑎𝑡𝑜𝑙,
𝑦 012/ =

1
𝑁0,-+

4
𝑤,𝑦, 5



6
LLNL-PRES-811622

§ Built on SUNDIALS vector, matrix, and solver APIs:
— Several native modules including wrappers to other math libraries
— Supports user defined modules

§ ARKode includes several additional enhancements including:
— Variety of built-in Butcher tables (ERK, DIRK, & IMEX) or user-supplied
— Variety of built-in step size adaptivity controllers, or user-supplied
— Variety of built-in implicit predictor algorithms, or user-supplied
— Ability to specify that problem is linearly implicit
— Ability to resize data structures based on changing IVP size 
— All internal solver parameters are user-modifiable

ARKode Flexibility Features



7
LLNL-PRES-811622

Significantly more parallel resources can be 
exploited with multigrid in time

Parallelize in space only

Store only one time step

Parallelize in space and time

Store several time steps

x (space)
t(

tim
e)

x (space)

t(
tim

e)

§ On massively parallel systems serial time integration becomes a bottleneck 
limiting the efficiency of simulations

§ Parallel-in-time methods introduce an additional dimension of parallelism by 
distributing the workload in time across multiple processors



8
LLNL-PRES-811622

§ Create concurrency in the time dimension

§ Non-intrusive with unchanged time discretization:
— Converges to same solution as sequential stepping
— Only stores C-points to minimize storage
— Overlaps communication and computation
— Extends to nonlinear problems with FAS formulation

§ Speedups can be significant:
— Useful only beyond some scale, there is a crossover 

point
— Sometimes need significantly more parallelism just 

to break even
— The more time steps, the more speedup potential

§ Allows for reuse of existing software

Open source, flexible, and 
non-intrusive MGRIT implementation

F-relaxation

t0 t1 t2…

T0 T1 …

dt

DT = mdt

tN
F-point
C-point

C-relaxation

Relaxation alternates between F / C-points
§ F-relax= integration over C intervals
§ C-relax = one integration step



9
LLNL-PRES-811622

B
A

XBraid supports temporal adaptivity via an 
FMG-cycle

§ User provides a refinement factor on
the fine grid

§ Example time grid hierarchy (A)

§ User requests refinement factors on the finest grid which 
generates a new grid and hierarchy (B)

Level 0

Level 1

Level 2

Level -1

Level 0

Level 1

Level 2

F-pointC-point  (coarse grid)

2 24

Notice 
new C -pts

Temporal refinement 
done here

For more see
Falgout et al. 2019



10
LLNL-PRES-811622

§ Two data structures:
— An App structure holding any data needed by the interface
— A Vector structure wrapping a SUNDIALS NVector

§ Several wrapper functions:
— Vector: Clone, Free, Sum, SpatialNorm, and Buffer Size, Pack, and Unpack
— Other: Init, Access, and Step

§ How much of the interfacing should the user supply and how much should 
be done by SUNDIALS? Goals:
• Make things as simple as possible for a user that wants to try MGRIT
• Provide as much flexibility as possible for the advanced user

SUNDIALS + XBraid, what do we need?



11
LLNL-PRES-811622

SUNBraid: Vector Wrapper

§ Only a few small wrapper scripts 
are needed to use an NVector
with XBraid

§ Added new NVector buffer size, 
pack, and unpack functions:
— N_VBufSize(v, size)
— N_VBufPack(v, buf)
— N_VBufUnpack(v, buf)

§ Custom NVector modules only 
need to add these new functions 
to utilize the interface wrappers 



12
LLNL-PRES-811622

SUNBraid: App Structure

§ Generic SUNBraid_App
structure follows the same 
object oriented design used 
for other SUNDIALS modules

§ Individuals integrators or the 
user define the app content 
and implement the object 
operations

§ This flexibly in defining the 
content makes it is easy to 
support simple uses case 
while accommodating 
advanced users



13
LLNL-PRES-811622

ARKBraid: App Structure

§ The ARKode SUNBraid_App
structure content holds
— integrator memory,
— optional parameters, 
— interface function 

pointers

§ User setups the integrator 
as normal and attaches it 
with SUNBraidApp_Init(…)

§ Set and Get functions allow 
users to modify or query 
most content



14
LLNL-PRES-811622

Example: 2D Heat Equation

§ Problem setup:
— Second order center differences in space
— Second order SDIRK method in time
— 128 x 128 mesh
— MPI parallel in space
— Inexact Newton with SUNDIALS PGC 

preconditioned using hypre PFMG

§ Test Setups:
— Fixed time stepping from [0, 1] with a 

step size of 1.0e-5
— Adaptive time stepping from [0, 20] with 

various adaptivity controllers

𝑑𝑢
𝑑𝑡

= ∇!𝑢 + 𝑏 𝑥, 𝑦, 𝑡

The forcing term is chosen such that 
the analytic solution is

𝑢 𝑥, 𝑦, 𝑡 = sin!(𝜋 𝑥) sin!(𝜋 𝑦) cos!(𝜋𝑡)

Comparison of serial-in-time and parallel-in-time codes 



15
LLNL-PRES-811622

Example: 2D Heat Equation Fixed Step

NP Space Speedup Crossover

16 ≈20x ≈256 (16)

64 ≈20x ≈600 (10)

256 ≈10x ≈1,024 (4)

§ Setup:
— Time interval [0, 1]
— Step size 1.0e-5 s
— Coarsening factors level 0 = 16, 

other levels = 2
— ARKStep rtol = 10.3, atol = 10.6

— Xbraid tol = 10"#/ 𝑑𝑥 ∗ 𝑑𝑦 ∗ 𝑑𝑡

— 2-norm in time and space



16
LLNL-PRES-811622

Example: 2D Heat Equation Adaptive Step

Controller Speedup Crossover

I ≈6.5x ≈256 (4)

PI ≈3.5x ≈4,096 (64)

PID ≈2x ≈10,000 (157)

Controller Steps Attempted

I 79,731 117,087

PI 51,285 62,109

PID 37,203 37,268

PinT (I) 63,263 --

NP Space = 64

§ Setup: Time interval [0, 20],  adaptive step sizes, coarsening factor 4 on all levels, 
ARKStep rtol = 10.3, atol = 10.6, Tol = 10.7/ 𝑑𝑥 ∗ 𝑑𝑦, max-norm in time, 2-norm in space



17
LLNL-PRES-811622

§ The non-intrusive design of the XBriad library makes it straight forward to 
interface with SUNDIALS’ ARKode package

§ MGRIT has shown potential for significant speedups by exposing parallelism 
in the time domain

§ The SUNBraid interface requires minimal modification to existing code to get 
started and is flexible enough to accommodate advanced use cases 

§ Current work includes:
— Exploring approaches for adapting solver tolerances and integrator 

parameters during the solve
— Adding an option to supply a residual function to XBraid from SUNDIALS

§ The XBraid interface will be release in SUNDIALS later this summer

Takeaways and Current Work



18
LLNL-PRES-811622

Acknowledgements

This research was supported by the Exascale Computing 
Project (17-SC-20-SC), a collaborative effort of the U.S. 
Department of Energy Office of Science and the National 
Nuclear Security Administration.

This material is based upon work supported by the 
U.S. Department of Energy, Office of Science, Office 
of Advanced Scientific Computing Research.

computing.llnl.gov/sundials

computing.llnl.gov/xbraid



Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes 
any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe 
privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or 
favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence 
Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

Thank You!


