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SUNDIALS: SUite of Nonlinear and Differential / 
ALgebraic equation Solvers
§ Software library of ODE and DAE time integrators and nonlinear solvers

— Consists of six packages: CVODE(S), ARKode, IDA(S), and KINSOL
— Written in C with interfaces to Fortran
— Designed to be easily incorporated into existing codes

§ Modular implementation
— Data use is fully encapsulated by vector and matrix APIs
— Nonlinear and linear solvers are fully encapsulated from the integrators
— All parallelism is encapsulated in vectors, solvers, and user-supplied functions
— Vector, matrix, and solver modules can all be user-supplied

§ Availability and support
— Freely available; BSD 3-Clause license; >27,000 downloads in 2019
— Detailed user manuals and an active user community email list

https://computing.llnl.gov/sundials



3
LLNL-PRES-811622

§ The ARKode package is designed to work as an infrastructure for developing 
adaptive one-step time integration methods.

— ARKStep: Provides ERK, DIRK, and IMEX ARK methods for problems of the form 

— ERKStep: A streamlined module for ERK methods for problems of the form

— MRIStep: Multirate Infinitesimal Step (MIS) like methods for problems of the form

𝑀
𝑑𝑦
𝑑𝑡 = 𝑓! 𝑡, 𝑦 + 𝑓" 𝑡, 𝑦 , 𝑦 𝑡# = 𝑦#

𝑑𝑦
𝑑𝑡 = 𝑓$ 𝑡, 𝑦 + 𝑓% 𝑡, 𝑦 , 𝑦 𝑡# = 𝑦#

𝑑𝑦
𝑑𝑡 = 𝑓 𝑡, 𝑦 , 𝑦 𝑡# = 𝑦#

ARKode – Adaptive Runge-Kutta methods 
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§ IMEX ARK methods for problems with two split components:

— 𝑀 is any nonsingular linear operator (mass matrix, typically 𝑀 = 𝐼), 
— 𝑓! 𝑡, 𝑦 contains the explicit (non-stiff) terms,
— 𝑓"(𝑡, 𝑦) contains the implicit (stiff) terms. 

§ Combine two s-stage RK methods; let 𝑡&,(∗ = 𝑡& + 𝑐(ℎ&, ℎ& = 𝑡&*+ − 𝑡&: 

𝑀
𝑑𝑦
𝑑𝑡 = 𝑓! 𝑡, 𝑦 + 𝑓" 𝑡, 𝑦 , 𝑦 𝑡# = 𝑦#

𝑀𝑧, = 𝑀𝑦& + ℎ&0
(-+

,.+
𝐴,,(! 𝑓! 𝑡&,(! , 𝑧( + ℎ&0

(-+

,
𝐴,,(" 𝑓" 𝑡&,(" , 𝑧( , 𝑖 = 1, … , 𝑠

𝑀𝑦&*+ = 𝑀𝑦& + ℎ&0
(-+

/
𝑏(!𝑓! 𝑡&,(! , 𝑧( + 𝑏("𝑓" 𝑡&,( , 𝑧(

𝑀7𝑦&*+ = 𝑀𝑦& + ℎ&0
(-+

/
8𝑏(!𝑓! 𝑡&,(! , 𝑧( + 8𝑏("𝑓" 𝑡&,( , 𝑧(

(solution)

(embedding)

ARKStep – Additive Runge-Kutta methods 
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§ All SUNDIALS integrators utilize local truncation error estimates to adapt the 
step size to meet user defined tolerances

— With Runge-Kutta methods the error estimate is based on the difference between 
the computed and embedded solutions

— Accept the step if 𝐸 ℎ& 012/ < 1, otherwise reject the step
— Choose ℎ&*+ such that 𝐸(ℎ&*+) < 1

§ Relative tolerance (𝑟𝑡𝑜𝑙) controls local error relative to the size of the solution
— 𝑟𝑡𝑜𝑙 = 10.3 means that errors are controlled to 0.01%

§ Absolute tolerances (𝑎𝑡𝑜𝑙) control error when a solution component may be small
— e.g., 𝑎𝑡𝑜𝑙, should be the noise level for a solution component

Time steps are chosen to minimize local 
truncation error and maximize efficiency

𝑤, =
1

𝑟𝑡𝑜𝑙 𝑦, + 𝑎𝑡𝑜𝑙,
𝑦 012/ =

1
𝑁0,-+

4
𝑤,𝑦, 5
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§ Built on SUNDIALS vector, matrix, and solver APIs:
— Several native modules including wrappers to other math libraries
— Supports user defined modules

§ ARKode includes several additional enhancements including:
— Variety of built-in Butcher tables (ERK, DIRK, & IMEX) or user-supplied
— Variety of built-in step size adaptivity controllers, or user-supplied
— Variety of built-in implicit predictor algorithms, or user-supplied
— Ability to specify that problem is linearly implicit
— Ability to resize data structures based on changing IVP size 
— All internal solver parameters are user-modifiable

ARKode Flexibility Features
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Significantly more parallel resources can be 
exploited with multigrid in time

Parallelize in space only

Store only one time step

Parallelize in space and time

Store several time steps

x (space)
t(

tim
e)

x (space)

t(
tim

e)

§ On massively parallel systems serial time integration becomes a bottleneck 
limiting the efficiency of simulations

§ Parallel-in-time methods introduce an additional dimension of parallelism by 
distributing the workload in time across multiple processors
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§ Create concurrency in the time dimension

§ Non-intrusive with unchanged time discretization:
— Converges to same solution as sequential stepping
— Only stores C-points to minimize storage
— Overlaps communication and computation
— Extends to nonlinear problems with FAS formulation

§ Speedups can be significant:
— Useful only beyond some scale, there is a crossover 

point
— Sometimes need significantly more parallelism just 

to break even
— The more time steps, the more speedup potential

§ Allows for reuse of existing software

Open source, flexible, and 
non-intrusive MGRIT implementation

F-relaxation

t0 t1 t2…

T0 T1 …

dt

DT = mdt

tN
F-point
C-point

C-relaxation

Relaxation alternates between F / C-points
§ F-relax= integration over C intervals
§ C-relax = one integration step
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B
A

XBraid supports temporal adaptivity via an 
FMG-cycle

§ User provides a refinement factor on
the fine grid

§ Example time grid hierarchy (A)

§ User requests refinement factors on the finest grid which 
generates a new grid and hierarchy (B)

Level 0

Level 1

Level 2

Level -1

Level 0

Level 1

Level 2

F-pointC-point  (coarse grid)

2 24

Notice 
new C -pts

Temporal refinement 
done here

For more see
Falgout et al. 2019
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§ Two data structures:
— An App structure holding any data needed by the interface
— A Vector structure wrapping a SUNDIALS NVector

§ Several wrapper functions:
— Vector: Clone, Free, Sum, SpatialNorm, and Buffer Size, Pack, and Unpack
— Other: Init, Access, and Step

§ How much of the interfacing should the user supply and how much should 
be done by SUNDIALS? Goals:
• Make things as simple as possible for a user that wants to try MGRIT
• Provide as much flexibility as possible for the advanced user

SUNDIALS + XBraid, what do we need?
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SUNBraid: Vector Wrapper

§ Only a few small wrapper scripts 
are needed to use an NVector
with XBraid

§ Added new NVector buffer size, 
pack, and unpack functions:
— N_VBufSize(v, size)
— N_VBufPack(v, buf)
— N_VBufUnpack(v, buf)

§ Custom NVector modules only 
need to add these new functions 
to utilize the interface wrappers 
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SUNBraid: App Structure

§ Generic SUNBraid_App
structure follows the same 
object oriented design used 
for other SUNDIALS modules

§ Individuals integrators or the 
user define the app content 
and implement the object 
operations

§ This flexibly in defining the 
content makes it is easy to 
support simple uses case 
while accommodating 
advanced users
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ARKBraid: App Structure

§ The ARKode SUNBraid_App
structure content holds
— integrator memory,
— optional parameters, 
— interface function 

pointers

§ User setups the integrator 
as normal and attaches it 
with SUNBraidApp_Init(…)

§ Set and Get functions allow 
users to modify or query 
most content
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Example: 2D Heat Equation

§ Problem setup:
— Second order center differences in space
— Second order SDIRK method in time
— 128 x 128 mesh
— MPI parallel in space
— Inexact Newton with SUNDIALS PGC 

preconditioned using hypre PFMG

§ Test Setups:
— Fixed time stepping from [0, 1] with a 

step size of 1.0e-5
— Adaptive time stepping from [0, 20] with 

various adaptivity controllers

𝑑𝑢
𝑑𝑡

= ∇!𝑢 + 𝑏 𝑥, 𝑦, 𝑡

The forcing term is chosen such that 
the analytic solution is

𝑢 𝑥, 𝑦, 𝑡 = sin!(𝜋 𝑥) sin!(𝜋 𝑦) cos!(𝜋𝑡)

Comparison of serial-in-time and parallel-in-time codes 
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Example: 2D Heat Equation Fixed Step

NP Space Speedup Crossover

16 ≈20x ≈256 (16)

64 ≈20x ≈600 (10)

256 ≈10x ≈1,024 (4)

§ Setup:
— Time interval [0, 1]
— Step size 1.0e-5 s
— Coarsening factors level 0 = 16, 

other levels = 2
— ARKStep rtol = 10.3, atol = 10.6

— Xbraid tol = 10"#/ 𝑑𝑥 ∗ 𝑑𝑦 ∗ 𝑑𝑡

— 2-norm in time and space
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Example: 2D Heat Equation Adaptive Step

Controller Speedup Crossover

I ≈6.5x ≈256 (4)

PI ≈3.5x ≈4,096 (64)

PID ≈2x ≈10,000 (157)

Controller Steps Attempted

I 79,731 117,087

PI 51,285 62,109

PID 37,203 37,268

PinT (I) 63,263 --

NP Space = 64

§ Setup: Time interval [0, 20],  adaptive step sizes, coarsening factor 4 on all levels, 
ARKStep rtol = 10.3, atol = 10.6, Tol = 10.7/ 𝑑𝑥 ∗ 𝑑𝑦, max-norm in time, 2-norm in space
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§ The non-intrusive design of the XBriad library makes it straight forward to 
interface with SUNDIALS’ ARKode package

§ MGRIT has shown potential for significant speedups by exposing parallelism 
in the time domain

§ The SUNBraid interface requires minimal modification to existing code to get 
started and is flexible enough to accommodate advanced use cases 

§ Current work includes:
— Exploring approaches for adapting solver tolerances and integrator 

parameters during the solve
— Adding an option to supply a residual function to XBraid from SUNDIALS

§ The XBraid interface will be release in SUNDIALS later this summer

Takeaways and Current Work
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