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Welcome Address

The PinT 2020 workshop is being held virtually, June 8–12, 2020, due to COVID-19. We
thank the speakers and the participants for their flexibility. Each day will feature a series
talks scheduled within a 2-hour block, 3–5pm GMT. Attendees and presenters need to pre-
register at
https://michigantech.zoom.us/meeting/register/upUsd-6hqj4iGNa05WE3Ey2RkX26G6K7-Q

Some meeting logistics:

• We recommend that you download and install the latest version of the zoom app,
https://zoom.us/support/download. All attendees and presenters will require ver-
sion 5.x.

• Only the presenter and host will be able to share screens.

• Participants are automatically muted upon entry to the zoom meeting. During the
question period, the host will allow participants to unmute themselves to ask questions.
If you prefer, you may also post a question to the chat, and a host will share your
question with the presenter.

• If you have sufficient bandwidth, please enable your video feed – it makes the session
feel more interactive.

Related PinT news:

• Following the conclusion of the virtual PinT 2020 workshop, we will release a call
for papers, to be published within a proceedings issue of Springer’s Proceedings in
Mathematics and Statistics. Registered attendees and members of the parallelin-
time@googlegroups.com mailing list will be notified by email when the call is open.
To subscribe to the parallelintime mailing list, please send an email to
parallelintime+subscribe@googlegroups.com.

• An NSF-sponsored PinT training conference will be held June 7–11, 2021. Please visit
that conference website at: http://conferences.math.mtu.edu/cbms2020/

• PinT 2021 will be held in Houghton, MI, Jun 14–18, 2021. Please visit that conference
website at: http://conferences.math.mtu.edu/pint2021/
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Monday June 8, 2020

A universal parallel predictor algorithm of arbitrarily high order
for implicit methods Jun 8

3:00pm
GMTLaurent Jay

laurent-jay@uiowa.edu

University of Iowa

We consider the application of implicit methods to any type of initial value problems (IVPs).
We present a new predictor algorithm for the iterates of modified Newton type/fixed point
iterations for the solution to the nonlinear equations. The new predictor algorithm is uni-
versal since it applies to any implicit method applied to any type of IVPs for ODEs, DAEs,
and time-varying PDEs. It generalizes, unifies, and improves previous approaches. We il-
lustrate our results for the internal stages of implicit Runge-Kutta (IRK) type methods
applied to ODEs and the iterated corrections of starting approximation algorithms based
for example on continuous/dense output. Our methodology relies on the existence of an
asymptotic expansion in the stepsize h of the error between the exact discrete values and
an initial starting approximation. Arbitrarily high order approximations can be obtained
assuming sufficient smoothness of the solution. Not only starting approximations (i.e., the
first iterate) can be predicted, but also the inner iterates of modified Newton type/fixed
point iterations can also be predicted leading to a new type of iterations. These improved
prediction algorithms require some extra memory to store previous exact errors, but they
require minimal computational effort since no new evaluation of the functions to describe the
vector field and the constraints is needed. Moreover, for a given iteration each component
and each correction can be obtained completely independently from the others allowing for
an embarrassingly parallel implementation. This methodology allows a drastic reduction of
the number of Newton-type iterations in implicit methods at the cost of some extra memory
storage illustrating the well-known computer science principle of time-memory trade-off.
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AIR for a space-time hybridizable discontinuous Galerkin method Jun 8
3:30pm
GMTAbdullah Ali Sivasa,o, Ben Southworthb and Sander Rhebergena

oaasivas@uwaterloo.ca

aUniversity of Waterloo, bUniversity of Colorado Boulder

Space-time finite element methods are excellent for the discretization of partial differential
equations (PDEs), including on time-dependent domains. Unlike classical time-stepping
methods, such as Runge-Kutta or multistep methods, space-time methods make no distinc-
tion between spatial and temporal variables. Instead, the PDE is discretized directly in
d + 1-dimensional space-time, where d is the spatial dimension. Consider, for example, the
time-dependent advection equation in d spatial dimensions, ∂tu + a · ∇u = f . To apply the
space-time finite element method, we introduce first the space-time gradient ∇̃ = (∂t,∇)
and space-time advective velocity ã = (1, a). We, then, write the time-dependent advection
equation as a ‘steady’ advection equation in space-time: ã · ∇̃u = f . We discretize this
equation by the space-time HDG method of [1,3].

In this talk, we discuss the solution of the space-time HDG discretization of the advection
and advection-diffusion equation on time-dependent domains by `AIR algebraic multigrid
[2]. `AIR was shown in [2] to be an optimal solver for hyperbolic and advection-dominated
problems. This makes `AIR ideal also as a solver for space-time discretizations of advec-
tion dominated flows. We will also discuss and compare the solution of space-time HDG
discretizations resulting from an all-at-once discretization, in which the d + 1-dimensional
space-time domain has been discretized into a d + 1-dimensional unstructured mesh, and a
slab approach, in which the space-time domain is first partitioned into time-slabs and the
problem is solved one slab at a time. We investigate the efficiency of `AIR for purely hy-
perbolic and strongly advection-dominated problems, which are difficult or intractable for
many parallel-in-time methods, and also consider the weakly advection-dominated case. We
furthermore investigate `AIR in combination with space-time adaptive mesh refinement, a
unique advantage of space-time finite elements over a traditional separation of space and
time.

[1] K.L.A. Kirk, et al., Analysis of a space-time hybridizable discontinuous Galerkin method
for the advection-diffusion problem on time-dependent do- mains, SIAM J. Numer. Anal.,
57/4 (2019).

[2] T. A. Manteuffel, et al., Nonsymmetric algebraic multigrid based on local approximate
ideal restriction (‘AIR), SIAM J. Sci. Comput., 40/6 (2018).

[3] S. Rhebergen and B. Cockburn, Space-time hybridizable discontinuous Galerkin method
for the advection-diffusion equation on moving and deforming meshes, in The Courant-
Friedrichs-Lewy (CFL) condition, 80 years after its discovery, Birkhauser Science, 2013.
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Solving PDEs in Space-Time: 4D Tree-Based Adaptivity,
Mesh-Free and Matrix-Free Approaches Jun 8

4:00pm
GMTMilinda Fernando

milinda@cs.utah.edu

University of Utah

Numerically solving partial differential equations (PDEs) remains a compelling application
of supercomputing resources. The next generation of computing resources – exhibiting in-
creased parallelism and deep memory hierarchies– provides an opportunity to rethink how
to solve PDEs, especially time-dependent PDEs. Here, we consider time as an additional
dimension and simultaneously solve for the unknown in large blocks of time (i.e. in 4D
space-time), instead of the standard approach of sequential time-stepping. We discretize
the 4D space-time domain using a mesh-free kD-tree construction that enables good paral-
lel performance as well as on-the-fly construction of adaptive 4D meshes. To best use the
4D space-time mesh adaptivity, we invoke concepts from PDE analysis to establish rigorous
posterior error estimates for a general class of PDEs. We solve canonical linear as well as
non-linear PDEs (heat diffusion, advection-diffusion, and Allen-Cahn) in space-time, and
illustrate the following advantages: (a) sustained scaling behavior across a larger processor
count compared to sequential time-stepping approaches, (b) the ability to capture“localized”
behavior in space and time using the adaptive space-time mesh, and (c) removal of anytime-
stepping constraints like the Courant-Friedrichs-Lewy (CFL) condition, as well as the ability
to utilize spatially varying time-steps. We believe that the algorithmic and mathematical
developments along with efficient deployment on modern architectures shown in this work
constitute an important step towards improving the scalability of PDE solvers on the next
generation of supercomputers.

3



Parallel space - time solution strategy for the Navier-Stokes
equation Jun 8

4:30pm
GMTBiswajit Kharaa,o, Robert Dyja b, Kumar Saurabha, Baskar Ganapathysubramaniana

obkhara@iastate.edu

aIowa State University, b Czestochowa University of Technology

We study solution strategies for solving time-dependent flow problems through a fully cou-
pled space-time formulation. Such a method could be considered a member of the class
of methods that attempts to exploit parallelism in both space as well as time when solving
partial differential equations numerically. When developing such a methodology, the discrete
problem presents an array of challenges for both linear as well as nonlinear equations. For ex-
ample, the existence of an ”advection” in time direction and the nonexistence of diffusion in
the time direction renders the global Peclet number infinite. Thus proper stabilized methods
need to devised for these problems. We formulate and implement a stabilized method based
on the variational multiscale method (VMS). Furthermore, when solving nonlinear problems,
in the absence of any ”marching”, the lack of a good guess makes any quasi-Newton solve dif-
ficult to converge. We find a way around this issue by using an adaptive refinement strategy
in space-time and seek coarse scale solution in earlier iterations and resolve smaller features
progressively. To this end, we develop an aposteriori error indicator for the space-time sta-
bilized variational problem. For specific application to flow problems using this method, we
demonstrate examples using two benchmark problems in computational fluid dynamics: (i)
the lid driven cavity and (ii) flow past a cylinder.
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Tuesday June 9, 2020

ParaDIAG: Parallel-in-Time Algorithms Based on the
Diagonalization Technique Jun 9

3:00pm
GMTShulin Wu

wushulin84@hotmail.com

Northeast Normal University

n 2008, Maday and Ronquist introduced an interesting new approach for the direct parallel-
in-time (PinT) solution of time-dependent PDEs. The idea is to diagonalize the time stepping
matrix, keeping the matrices for the space discretization unchanged, and then to solve all
time steps in parallel. Since then, several variants appeared, and we call these closely related
algorithms ParaDIAG algorithms. ParaDIAG algorithms in the literature can be classified
into two groups: ParaDIAG-I: direct standalone solvers, and ParaDIAG-II: iterative solvers,

We will explain the basic features of each group in this note. To have concrete examples,
we will introduce ParaDIAG-I and ParaDIAG-II for the advection-diffusion equation. We
will also introduce ParaDIAG-II for the wave equation and an optimal control problem for
the wave equation. We could have used the advection-diffusion equation as well to illustrate
ParaDIAG-II, but wave equations are known to cause problems for certain PinT algorithms
and thus constitute an especially interesting example for which ParaDIAG algorithms were
tested. In this talk, we try to explain the main idea and the main known theoretical results
in each case together with some numerical results.

5



A linear-algebra perspective on convergence of Parareal and
MGRiT Jun 9

3:30pm
GMTBen Southworth

ben.s.southworth@gmail.com

University of Colorado

Parareal and multigrid reduction in time (MGRiT) are two of the most popular parallel-in-
time methods. Both can be posed as preconditioned fixed-point iterations, for which con-
vergence in an appropriate norm is defined by the (discrete) error- and residual-propagation
operators. Here, we introduce a linear-algebra analysis for convergence of Parareal and two-
level MGRiT, measuring the norm of error- and residual-propagation. The analysis is based
on a ”temporal approximation property” (TAP), which provides a measurement of how the
coarse-grid time stepper approximates the fine-grid time stepper. For linear problems inde-
pendent of time, satisfying the TAP provides necessary and sufficient conditions for two-grid
convergence. Furthermore, these conditions are asymptotically exact, that is, the accuracy of
the TAP defines the norm of error- and residual-propagation in the limit of a large number of
time steps, N. For diagonalizable operators, explicit upper and lower bounds on convergence
based on N can also be derived, confirming the asymptotic results are tight in practice.

We emphasize that for linear problems, the TAP defines exactly what is necessary of the
coarse- and fine-grid time steppers for convergence of Paraeal and two-level MGRiT. Theory
is demonstrated on two hyperbolic examples, the wave equation and advection-reaction equa-
tion, and is also used to prove which Runge-Kutta schemes yield convergence independent
of spatial and temporal grid sizes for SPD spatial operators. We conclude by commenting
on ongoing extensions of the theory to the linear time-dependent setting, which appears to
follow a natural generalization by appealing to recent developments in generalized locally
Toeplitz sequences.

6



TriMGRIT: An Extension of Multigrid Reduction in Time for
Constrained Optimization Jun 9

4:00pm
GMTRobert Falgout

rfalgout@llnl.gov

Lawrence Livermore National Laboratory

Since clock speeds are no longer increasing, time integration is becoming a sequential bot-
tleneck. The multigrid reduction in time (MGRIT) algorithm is an approach for creating
concurrency in the time dimension that can be exploited to overcome this bottleneck and
is designed to build on existing codes and time integration techniques in a non-intrusive
manner. In this talk, we will discuss an extension of MGRIT for solving time-dependent
constrained optimization problems. In the linear case, the MGRIT algorithm can be viewed
as an approximate block cyclic reduction algorithm applied to a block lower bi-diagonal sys-
tem. TriMGRIT extends this idea to block tri-diagonal systems such as those that arise in
time-dependent constrained optimization. We will present a linear and a nonlinear algorithm
applied to several model problems.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344.
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PyMGRIT - a Python Package for the
multigrid-reduction-in-time algorithm Jun 9

4:30pm
GMTJens Hahne

jens.hahne@math.uni-wuppertal.de

Bergische Universität Wuppertal, Germany

The multigrid-reduction-in-time (MGRIT) algorithm is a reduction-based time-multigrid
method for solving time-dependent problems. The MGRIT method is a non-intrusive ap-
proach that essentially uses the same time integrator as a traditional time-stepping algorithm.
Therefore, it is particularly well suited for introducing time parallelism in simulations using
existing application codes. In this talk, we introduce the Python framework PyMGRIT,
which implements the MGRIT algorithm. The PyMGRIT framework features many differ-
ent variants of the MGRIT algorithm, from different cycle types and relaxation schemes,
as well as various coarsening strategies, including time-only and space-time coarsening, to
different time integrators on different levels in the multigrid hierarchy. Thereby, PyMGRIT
allows serial runs for prototyping and testing of new approaches, as well as parallel runs using
the Message Passing Interface (MPI). Examples illustrate different aspects of the package,
including pure time parallelism as well as space-time parallelism by coupling PyMGRIT with
PETSc or Firedrake, which enable spatial parallelism through MPI.

8



Wednesday June 10, 2020

Parareal — RBF algorithms for solving time-dependent PDEs Jun 10
3:00pm
GMTNadun Dissanayakeo, Cecile Piret and Benjamin Ong

onldissan@mtu.edu

Michigan Technological University

Radial basis functions (RBF) are a mesh-less approach to discretize differential operators in
space. Over the past two decades, the RBF method has gained attention from numerical
analysts for its ability to achieve spectral/high-order accuracy. When solving time-dependent
PDEs with RBFs, choosing a time integrator that couples well with the RBF discretizations
has been an important research topic within the RBF community. In this talk, we explore
how the parareal framework can be used to provide a time-parallel approach to solving time-
dependent PDEs discretized spatially using RBFs, focusing on how the RBF discretizations
can be modified (enriched) to generate desirable coarse parareal solvers.

9



Parallel-in-Time Solution of Time-Periodic Problems with
Unknown Period Jun 10

3:30pm
GMTIryna Kulchytska-Ruchka1 and Sebastian Schöps

1kulchytska@temf.tu-darmstadt.de

Technical University of Darmstadt

In this talk we consider a novel parallel-in-time algorithm for time-periodic problems where
the period is not given. Inheriting the idea of the periodic Parareal approach PP-PC [1], the
proposed method uses discretization on a two-level grid and calculates not only the initial val-
ues at each subinterval but also the corresponding period iteratively. This approach extends
the multiple shooting method with unknown period [2] by the Parareal-based approxima-
tion of the Jacobian. A particular diagonalization of the resulting nonlinear time-periodic
coarse-grid system [3] is introduced, thereby permitting further parallelization on the coarse
level. Performance of the introduced algorithm is illustrated for a Colpitt oscillator model.

[1] M. J. Gander, Y.-L. Jiang, B. Song, and H. Zhang. Analysis of two parareal algorithms
for time-periodic problems. SIAM J. Sci. Comput., 35(5):A2393–A2415, 2013.

[2] P. Deuflhard. Computation of periodic solutions of nonlinear ODEs. BIT, (24):456–466,
1984.

[3] I. Kulchytska-Ruchka and S. Schöps. Efficient parallel-in-time solution of time-periodic
problems using a multi-harmonic coarse grid correction, 2019. ArXiv: 1908.05245.

This work is supported by the ‘Excellence Initiative’ of the German Federal and State Gov-
ernments, the Graduate School of Computational Engineering at Technische Universität
Darmstadt, the BMBF grant No. 05M2018RDA (PASIROM).

10



Performance Analysis and Benchmarking for pySDC Jun 10
4:00pm
GMTRobert Speck

r.speck@fz-juelich.de

Juelich Supercomputing Centre, Forschungszentrum Juelich GmbH

The parallel full approximation scheme in space and time (PFASST) allows to integrate
multiple time-steps simultaneously. Based on iterative spectral deferred correction (SDC)
methods, PFASST uses a space-time hierarchy with various coarsening strategies to maximize
parallel efficiency. In numerous studies, this approach has been used on up to 448K cores
and coupled to space-parallel solvers which use finite differences, spectral methods or even
particles for discretization in space. However, since the integration of SDC or PFASST
into an existing application code is not straightforward and the potential gain is typically
uncertain, we have developed the Python prototyping framework pySDC. While it allows to
rapidly test new ideas and to implement first toy problems more easily, it can also be used
to run space-time parallel tests and applications using mpi4py. In this talk, we examine
pySDC’s performance on an HPC cluster and demonstrate the application of the “Scalable
Performance Measurement Infrastructure for Parallel Codes” (Score-P) for analyzing the
performance of our code. We highlight Python-, MPI- and PinT-specific aspects of our
results and show the benefits of a structured benchmarking workflow.
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N Ways to Fool the Masses (or Yourself) When Presenting PinT
Results Jun 10

4:30pm
GMTMichael Miniona, Robert Speckb, Sebastian Götschelc and Daniel Ruprechtd

amlminion@lbl.gov, br.speck@fz-juelich.de, csebastian.goetschel@tuhh.de and druprecht@tuhh.de

aLawrence Berkeley National Laboratory,
bJuelich Supercomputing Centre,

c,dHamburg University of Technology

Designing a good test case for a parallel in time method is not always straightforward. We
present parallel in time examples where the results can fool you or fool an audience in a
talk. Parts of the presentation are meant to be lighthearted, but the examples are inspired
by real events.

12



Thursday June 11, 2020

Space-time adaptivity for parabolic evolution equations Jun 11
3:00pm
GMTJan Westerdiep

j.h.westerdiep@uva.nl

Korteweg-de Vries Institute for Mathematics, University of Amsterdam

Taking the well-posed mixed simultaneous space-time variational formulation introduced in
[And13], we use methods previously developed in [SW20] to construct an adaptive loop that
produces space-time approximations as linear combinations of tensor-products of wavelets
in time and finite elements in space.

Using an efficient and reliable ‘hierarchical basis’ error estimator, we apply bulk chasing to
show convergence of the iterands. Moreover, we provide an algorithm for linear-complexity
application of the system matrix and an optimal preconditioner. Lastly, we include an
extensive numerical study to show that this method is competitive in terms of speed and
moreover exhibits optimal convergence rate in the number of degrees of freedom.

References:

[And13] R. Andreev. Stability of sparse space-time finite element discretizations of linear
parabolic evolution equations. IMA J. Numer. Anal., 33(1):242–260, 2013.

[SW20] Stability of Galerkin discretizations of a mixed space-time variational formulation of
parabolic evolution equations. IMA J. Numer. Anal., 2020.
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Exploring space-time adaptivity and parallel-in-time convergence
for hyperbolic PDEs Jun 11

3:30pm
GMTHans Johansen

hjohansen@lbl.gov

Lawrence Berkeley National Laboratory

We present an analysis of an adaptive space-time algorithm for hyperbolic partial differential
equations. The spatial discretization we use is either explicit or based on implicitly-defined
compact stencils, which require solving a linear system but can also have improved spectral
properties. The space-time refinement uses nested regions with finer grid spacing/time step,
that can be used to improve the error of solutions near steep gradients or material features.
We explore several time integration options, including explicit, ADI, spectral deferred correc-
tions, extrapolation, and exponential methods, and analyze the results in terms of spectral
accuracy. Finally, we demonstrate a combined parallel-refinement-in-time algorithm and
demonstrate why the spectral properties of operators in space and time must be considered
together for optimal efficiency and convergence.
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Simulating interface evolution using a parallel space-time
approach: Space-time adaptivity for the phase field equations Jun 11

4:00pm
GMTKumar Saurabha,o, Biswajit Kharaa, Milinda Fernandob, Hari Sundarb, Baskar

Ganapathysubramaniana

omaksbh@iastate.edu

aIowa State University, bUniversity of Utah

Interface evolution (solidification, melting, phase-separation) phenomena exhibit spatially
and temporally localized regions of steep gradients. Conventional approaches (i.e. time
marching approaches) utilize localized adaptivity in space, but generally utilize global adap-
tivity in time. Here, we consider time as an additional dimension and simultaneously solve
for the unknown in large blocks of time (i.e. in space-time). We focus on space-time so-
lutions of a generalized class of equations called the phase-field equations. We formulate a
variational multiscale (VMS) based space-time strategy that allows us to (a) exploit par-
allelism not only in space but also in time, (b) gain high order accuracy in time, and (c)
exploit adaptive refinement approaches to locally refine the region of interest in both space
and time. We illustrate this approach with several canonical problems including melting and
solidification of complex dendritic/snowflake structures and phase separation simulation.

15



A parallel-in-time, implicit/explicit multiderivative solver Jun 11
4:30pm
GMTJochen Schuetza,o and David Sealb

ojochen.schuetz@uhasselt.be

aHasselt University, bUS Naval Academy

In this talk, we present a novel scheme for a class of extremely stiff ordinary differential
equations.

Frequently, singularly perturbed differential equations can be split into stiff and non-stiff
parts. If so, a flux splitting can typically be constructed, and stiff parts are treated implicitly-
in-time for stability, while the other parts are treated explicitly for efficiency. This treatment
has been termed IMEX. It is, amongst others, very successful for the computation of solutions
to relaxation problems and low-Mach fluid flow equations.

To the best of our knowledge, the algorithm that we present in this talk is the first attempt
ever to combine IMEX methods with so-called multiderivative methods. For multiderivative
methods and an ODE of form y’(t) = f(y(t)), say, the algorithm does not only take y’(t) = f(y)
into account, but also y”(t) = f’(y) * f(y); this typically results in high-order methods with
very few storage requirements. The resulting method that we present here is provably stable
for prototypical equations and can be extended to partial differential equations. The scheme
is of predictor-corrector type which makes it easily amenable to temporal parallelisation.

In this talk, we will present both analytical and numerical results for the use of the method
with ordinary differential equations, including its use parallel-in-time. Subsequently, we will
show how to extend the method to the low-Mach Euler equations.

[1] D. Seal and J. Schütz. An asymptotic preserving semi-implicit multiderivative solver.
CMAT Preprint UP-19-09, http://www.uhasselt.be/Documents/CMAT/Preprints/2019/UP1909.pdf
, 2019.
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Friday June 12, 2020

A Comparison of Space-Time Multigrid and PFASST with
applications to Cardiac Electrophysiology Jun 12

3:00pm
GMTPietro Benedusi

benedp@usi.ch

Institute of Computational Science, Universitàella Svizzera Italiana

We present a space-time multilevel method that uses a hierarchy of non-nested meshes,
created by semi-geometric coarsening. The ”grey box” multigrid starts from a single fine
spatial mesh and automatically generates space-time coarse meshes of any dimension over
complex geometries.

Two model problems are considered: the heat equation with anisotropy and jumping coef-
ficients; the monodomain equation, a non-linear reaction-diffusion model arising from the
study of excitable media such as the myocardium.

We analyze the convergence and scaling properties of the proposed solution strategies, fo-
cusing on the spectral properties and conditioning of the underlying discrete operators that
arise from the tensor space-time finite element discretization.

Strong and weak scaling of the multilevel space-time approach is compared to PFASST (Par-
allel Full Approximation Scheme in Space and Time), highlighting properties and conceptual
and quantitative differences of both approaches.
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(MGRIT) Jun 12

3:30pm
GMTMasumi Sugiyama

msugiyama@unm.edu
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Based on current trends in computer architectures, faster compute speeds must come from
increased parallelism rather than increased clock speeds, which are stagnate. This situation
has created the well-known bottleneck for sequential time-integration, where each individual
time-value (i.e., time-step) is computed sequentially. One approach to alleviate this and
achieve parallelism in time is with multigrid. In this work, we consider the scheme known
as multigrid-reduction-in-time (MGRIT), but note that there exist other parallel-in-time
methods such as parareal and the parallel full approximation scheme in space and time
(PFASST). MGRIT is a full multi-level method applied to the time dimension and computes
multiple time-steps in parallel. Like all multigrid methods, MGRIT relies on the comple-
mentary relationship between relaxation on a fine-grid and a correction from the coarse grid
to solve the problem. In this work, we analyze and select relaxation weights for MGRIT
using a convergence analysis and find that this is beneficial since it improves the conver-
gence rate and consequently improves the efficiency of computation. We note that choosing
appropriate weights for relaxation (here weighted-Jacobi) has a long history for improving
the convergence of spatial multigrid methods, and thus it is no surprise that such weight
selection can be beneficial for MGRIT, too. Our numerical results demonstrate an improved
convergence rate and lower iteration count for MGRIT when non-unitary weights are used
for weighted-Jacobi.
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SUNDIALS is a suite of robust and scalable integrators and solvers for systems of ordi-
nary differential equations, differential-algebraic equations, and nonlinear equations used in
numerous applications codes for research and industry. The suite consists of six packages,
CVODE(S), ARKode, IDA(S), and KINSOL, all built on shared vector, matrix, linear solver,
and nonlinear solver APIs allowing for user-defined/application-specific data structures and
solvers, encapsulated parallelism, and algorithmic flexibility.

Presently the numerical methods in SUNDIALS utilize sequential time marching schemes
with parallelization only in the spatial dimension. Parallel-in-time methods introduce an
additional dimension of parallelism to better leverage the increased concurrency available
on massively parallel systems. In particular recent work utilizing multigrid-reduction-in-
time (MGRIT) has shown significant speedups over sequential time stepping and can be
implemented in a non-intrusive manner. In this talk we will present results from recent
efforts to combine the adaptive-step explicit, implicit, and IMEX time integration methods
from the SUNDIALS ARKode library with the XBraid MGRIT library to provide parallel-
in-time integration with SUNDIALS.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-810233
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Residual neural networks (ResNets) are a type of deep neural network and they exhibit ex-
cellent performance for many learning tasks, e.g., image classification and recognition. A
ResNet architecture can be interpreted as a discretization of a time-dependent ordinary differ-
ential equation (ODE), with the overall training process being an ODE-constrained optimal
control problem. The time-dependent control variables are the network weights and each
network layer is associated with a time-step. However, ResNet training often suffers from
prohibitively long run-times because of the many sequential sweeps forwards and backwards
across layers (i.e., time-steps) to carry out the optimization. This work first investigates
one possible remedy (parallel-in-time methods) for the long run-times by demonstrating the
multigrid-reduction-in-time method for the efficient and effective training of deep ResNets.
The proposed layer-parallel algorithm replaces the classical (sequential) forward and back-
ward propagation through the network layers by a parallel nonlinear multigrid iteration
applied to the layer domain. However, the question remains how one initializes networks
with hundreds or thousands of layers, which leads to the second part. Here, a multilevel
initialization strategy is developed for deep networks, where we apply a refinement strategy
across the time domain, that is equivalent to refining in the layer dimension. The result-
ing refinements create deep networks, with good initializations for the network parameters
coming from the coarser trained networks. We investigate this multilevel “nested iteration”
initialization strategy for faster training times and for regularization benefits, e.g., reduced
sensitivity to hyperparameters and randomness in initial network parameters.
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